

Western Regional Office - www.ncenet.com/LTPP
1885 S. Arlington Ave., Suite 111 - Reno, Nevada 89509 - Tel 702/329-4955 - Fax 702/329-5098

Long-Term Pavement Performance

September 14, 1998

Mr. Ahmad Ardani Colorado Dept. of Highways 4201 E. Arkansas Ave. Denver, CO 80222

RE: Draft SPS-2 Construction Report - SHRP 080200

Dear Mr. Ardani:

Please find enclosed the draft version of the SPS-2 Construction Report - SHRP 080200. Please review the report and return any comments to us.

If you have any questions, please do not hesitate to call.

Sincerely,

NICHOLS CONSULTING ENGINEERS, Chtd.

Douglas J. Frith, P.E.

Co-Principal Investigator

DJF/rkp

Enclosure

cc:

Gonzalo Rada

Shiraz Tayabji

Doug Brown

Monte Symons, w/o encl. John Nichols, w/o encl.

FEDERAL HIGHWAY ADMINISTRATION

Long Term Pavement Performance Specific Pavement Studies

SPS-2 CONSTRUCTION REPORT SHRP 080200

Prepared For:

Colorado Department of Transportation
Federal Aid Project No. I 076-1 (138)
I-76 Eastbound, Milepost 18.43
Adams County

Prepared By:
Western Region Contractor
Nichols Consulting Engineers, Chtd.
Reno, Nevada

September 1998

NICHOLS CONSULTING ENGINEERS, Chtd.

FEDERAL HIGHWAY ADMINISTRATION

Long Term Pavement Performance Specific Pavement Studies

SPS-2 CONSTRUCTION REPORT SHRP 080200

Prepared For:
Colorado Department of Transportation
Federal Aid Project No. I 076-1 (138)
I-76 Eastbound, Milepost 18.43
Adams County

Prepared By:
Western Region Contractor
Nichols Consulting Engineers, Chtd.
Reno, Nevada

September 1998

TABLE OF CONTENTS

<u>Pa</u>	<u>ige</u>
INTRODUCTION	1
BACKGROUND	2
PROJECT DESCRIPTION	4
	11 11
SUBGRADE Overview Phase 1 - New Alignment Phase 2 - Removal & Reconstruction DENSE GRADED AGGREGATE BASE (DGAB) Overview Phase 1 - New Alignment Phase 2 - Removal & Reconstruction PERMEABLE ASPHALT TREATED BASE (PATB) Overview LEAN CONCRETE BASE (LCB) Overview Phase 1 - New Alignment Phase 2 - Removal & Reconstruction PORTLAND CEMENT CONCRETE PAVEMENT (PCCP) Overview Phase 1 - New Alignment	12 12 12 14 15 15 17 17 18 18 24 24 27 27 27 31 34
SUBGRADE DENSE GRADED AGGREGATE BASE (DGAB) PERMEABLE ASPHALT TREATED BASE (PATB) LEAN CONCRETE BASE (LCB) PORTLAND CEMENT CONCRETE PAVEMENT (PCCP)	36 36 36 36 36 36

TABLE OF CONTENTS (cont'd)

APPENDIX A - PROJECT PHOTOGRAPHS

APPENDIX B - MATERIAL PROPERTIES

APPENDIX C - MATERIAL THICKNESS MEASUREMENTS

APPENDIX D - SAMPLING AREAS & FIELD TESTS CONDUCTED

APPENDIX E - CONSTRUCTION DATA SHEETS

LIST OF FIGURES

	<u>Page</u>
Figure 1. Figure 2.	Site location
	Typical section for test sections with non-drainable base layer
	LIST OF TABLES
	<u>Page</u>
Table 11. Table 12.	Basic experiment doweled jointed plain concrete pavements (SPS-2) 3 SPS-2 experiment criteria
Table 13. Table 14. Table 15. Table 16. Table 17.	SHRP 550 psi mix summary, average proportion properties

INTRODUCTION

The following construction report provides documentation of the as-built properties for the Colorado SPS-2 project and provides details of any deviations from the experiment construction guidelines. This report is available as an archival reference for future in-depth analysis of the SPS-2 materials and performance. Areas addressed within are construction sequence, layér thicknesses, material properties (as-placed), out of specification materials placed (even if removed and replaced), surface preparation techniques, problems encountered during construction, weather conditions during construction, and the presence of any construction joints within sections. Also included are the permeable asphalt treated base (PATB) mix design, portland cement concrete (PCC) mix design, lean concrete base (LCB) mix design, and summaries of slump and air content results. The sampling areas and tests conducted for each test section are shown in appendix D. A photographic log illustrating construction procedures, equipment and materials; testing procedures and equipment; and problems encountered during construction is located in appendix A. The material properties are found in appendix B and the material thickness measurements (raw data) in appendix C.

BACKGROUND

The SPS-2 experiment was developed to investigate the effect of selected structural factors on the long-term performance of rigid pavements constructed on different soil types in different climatic environments. The structural factors include concrete slab thickness, concrete strength, base material and drainability (permeability), base course thickness, and lane width. The basic experiment addresses doweled jointed plain concrete pavements. The supplementary experiments, designated SPS-2A and SPS-2B, address undoweled jointed plain concrete pavements with skewed joints and jointed reinforced concrete pavements, respectively. However, the option of constructing these sections was not exercised on this project. In table 1, the eight environmentally-related (soil type and climate) combinations are shown across the top and the 24 pavement structure combinations are shown along the left side. To make construction more feasible to the participating agencies, the 24 test sections required were divided into two separate experimental combinations with 12 sections each. The two experimental combinations were constructed at different locations in the western United States, one in Colorado and one in Northern Nevada. Colorado elected to construct the "U Series" of experimental sections.

Table 1. Basic experiment doweled jointed plain concrete pavements (SPS-2).

	Pave	ement Stru	ıcture								Climat	e Zone,	Subgra	de Site																									
PCC						W	et				Dry																												
Drain	1 1111411 0114119111		Strength		Freeze No Freeze			Freeze No Freeze																															
	Туре	in.	psi	Width	Fi	ne	Coa	arse	Fi	ne	Coa	arse	Fi	ne	Coa	ırse	Fi	ne	Co	arse																			
					J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	X	Y																			
			550	12	J1		L1		N1		P1		R1		T 1		V1		X1																				
				14		K13		M13		O13		Q13		S13		U13		W13		Y13																			
		8	900	12		K14		M14		014		Q14		S14		U14		W14		Y14																			
NO	DCAB			14	J2		L2		N2		P2		R2		T2		V2		X2																				
NO	DGAB		550	12		K15		M15		015		Q15		S15		U15		W15		Y15																			
				14	J3		L3		N3		P3		R3		Т3		V3		X3																				
		11	900	12	J4		L4		N4		P4		R4		T4		V4		X4																				
				14		K16		M16		016		Q16		S16		Ulb		W16		Y16																			
		LCB 8		8																		550	12	J5		L5		N5		P5		R5		T5		V5		X5	
						14		K17		M17		017		Q17		S17		U17		W17		Y17																	
					8	8	8	8	8	8	8	8	8	8	8	900	12		K18		M18		O18		Q18		S18		U18		W18		Y18						
NO	I CD				14	J6		L6		N6		P6		R6		Т6		V6		X6																			
NO	LCB		550	12		K19		M19		019		Q19		S19		Ü19		W19		Y19																			
					14	J7		L7		N7		P7		R7		T7		V7		X7																			
		11	900	12	J8		L8		N8		P8		R8		Т8		V8		X8																				
				14		K20		M20		O20		Q20		S20		U20		W20		Y20																			
			550	12	J9		L9		N9		P9		R9		Т9		V9		X9																				
]			14		K21		M21		021		Q21		S21		U21		W21		Y21																			
	~		8	900	12		K22		M22		O22		Q22		S22		U22		W22		Y22																		
7/20	PATB P.CAR			14	J10		L10		N10		P10	<u> </u>	R10		T10		V10		X10																				
YES	DGAB		550	12		K23		M23		023		Q23		S23		U23		W23		Y23																			
				14	J11		L11		N11		P11		R11		T11		V11		X11																				
		11	900	12	J12		L12		N12		P12		R12		T12		V12		X12																				
				14		K24		M24		024		Q24		S24		U24		W24		Y24																			

DGAB = Dense-graded untreated aggregate base

= Lean concrete base LCB

PATB = Permeable asphalt-treated base (4-in thickness placed on a DGAB layer)
All perpendicular doweled joints, 15-ft spacing

PROJECT DESCRIPTION

The Colorado SPS-2 site was constructed for the Strategic Highway Research Program (SHRP) as Federal Aid Project No. I 076-1 (138) on I-76 eastbound (M.P. 18.43) in Adams County, near Denver, Colorado (figure 1). The Colorado project is comprised of 13 sections, consisting of 12 primary sections and one state control section (figure 2). This site is located in a dry-freeze zone. The project is located near Barr Lake and wetlands are in close proximity. Also located on the site was a colony of prairie dogs on approximately one acre of the new alignment portion. The prairie dogs were eliminated using gas pellets. The project consists of both a new alignment and removal and reconstruction of a divided 4-lane highway (two lanes in each direction). The annual average daily traffic (two directions) is 8,400 (1988), with 16 percent heavy trucks and combinations. The estimated 18 kip ESAL rate in the study lane is 779,700 per year. The total design 18 kip ESAL applications in the design lane is 15,594,000, with a design period of 20 years. The Colorado SPS-2 was constructed with the primary sections having the criteria shown below in table 2.

Table 2. SPS-2 experiment criteria.

Table 2. St 5-2 experiment of iteria.				
Base Types:	Dense-graded aggregate base (DGAB)			
	Lean concrete base (LCB)			
	Permeable asphalt-treated base (PATB)			
Concrete Strengths:	550 psi flexural			
	900 psi flexural			
Pavement Thickness:	8 in			
	11 in			
Lane Widths:	12 ft			
	14 ft			
Drainage Systems:	Non-drainable (figure 3)			
-	Drainable (figure 4)			

The construction sequencing and layout of the test sections is shown in figure 2 and described in table 3. In addition to the 12 primary SHRP sections, a state supplemental control section, 080259, was also constructed from station 221+10 to 227+90. This section was built using Colorado's standard design criteria: 11 in of PCCP on subgrade, 650 psi flexural strength, and a 12 ft lane width.

Key personnel involved in the project are shown in table 4.

The construction of the SHRP SPS-2 sections was from approximately July 1, 1993 to November 1, 1993. The project was constructed in two phases. Phase 1, the new alignment portion, consisted of seven sections, 080217, 080220, 080221, 080222, 080223, 080224, and 080259, located from station 155+90 to 227+90 (figure 2). Phase 2, the removal and reconstruction portion, consisted of six sections, 080213, 080214, 080215, 080216, 080218, and 080219, located from station 101+40 to 155+60 (figure 2). Phase 1 was opened to traffic on October 7, 1993. Phase 2 was opened to traffic on January 5, 1994.

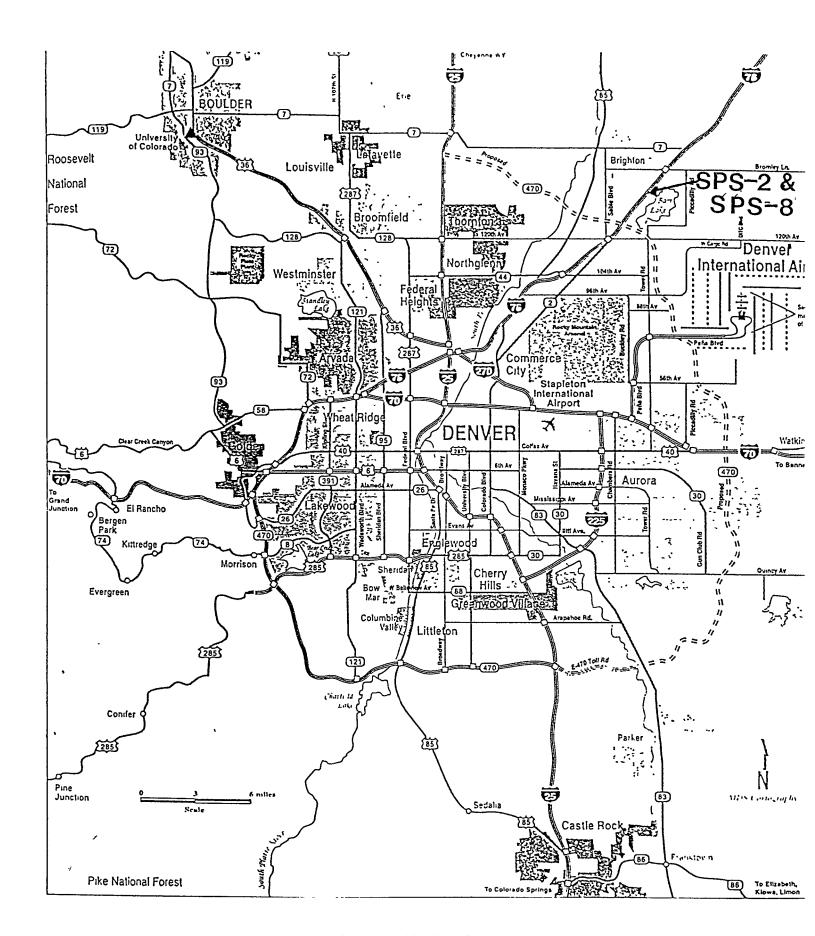


Figure 1. Site location.

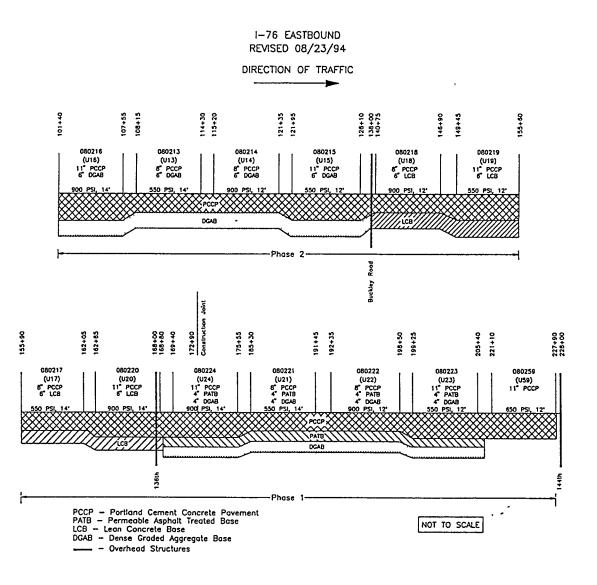


Figure 2. Layout and construction sequence of experimental test sections, Colorado SPS-2 project.

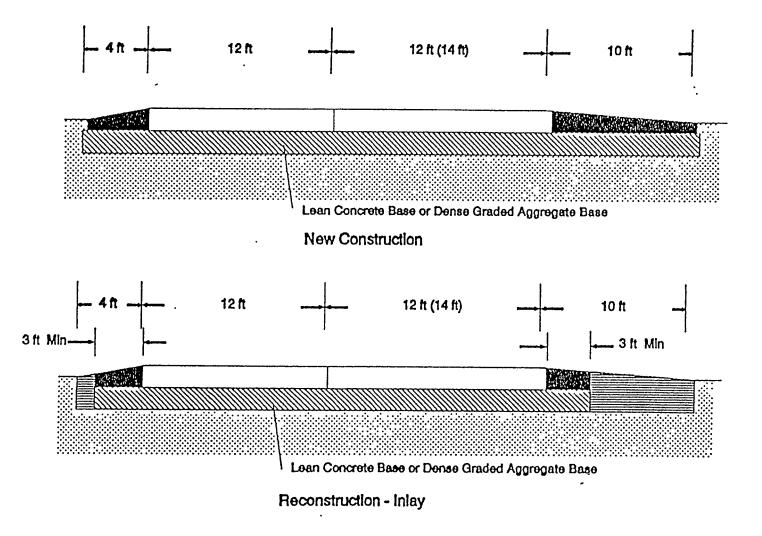


Figure 3. Typical section for test sections with non-drainable base layer.

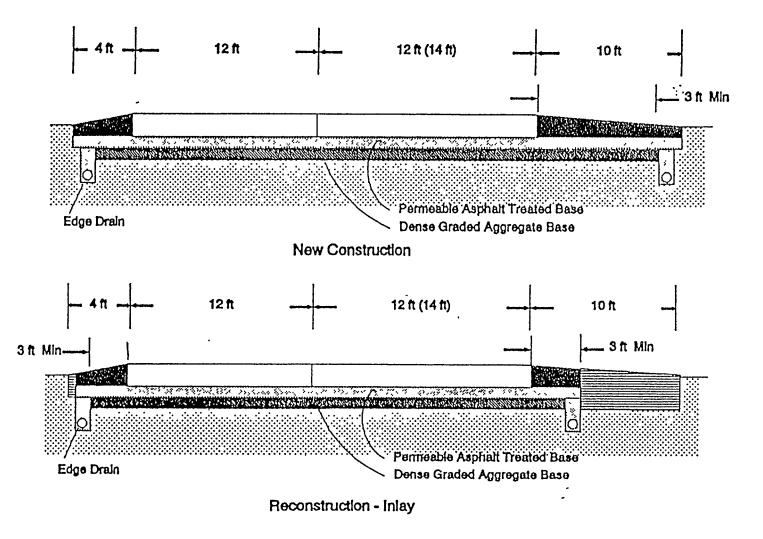


Figure 4. Typical section for test section with drainable base layer.

Table 3. Location of SPS-2 test sections, I-76 Colorado.

Section	Start Sec-	Start	End Moni-	End Sec-	Notes
No.	tion	Monitor	tor	tion	
08216	101+40	101+90	106+90	107+55	DG\11"\900#\14'
Trans	107+55			108+15	
080213	108+15	108+65	113+65	114+30	DG\8"\550#\14'
Trans	114+30			115+20	
080214	115+20	115+20	120+20	121+35	DG\8"\900#\12'
Trans	121+35			121+95	
080215	121+95	122+65	127+65	128+10	DG\11"\550#\12'
Trans	128+10			134+00	Large box culverts @ 133
080218	140+75	141+40	146+40	146+90	LC\8"\900#\12'
Trans	146+90			155+90	
080219	149+45	149+95	154+95	155+60	LC\11"\550#\12'
Trans	155+60			155+90	136th Ave. taper & exit ramp
080217	155+90	156+55		159+86.3	LC\8"\550#\14'
080217	159+86.3		161+55	162+05	
Trans	162+05			162+65	
080220	162+65	163+30	168+30	168+80	LC\11"\900#\14'
Trans	168+80			169+40	
080224	169+40	169+90	174+90	175+55	DG\PB\11"\900#\14'
Trans	175+55			185+30	136th. Ave entrance ramp
080221	185+30	185+95	190+95	190+45.84	DG\PB\8"\550#\14'
080221	190+45.84			191+45	
Trans	191+45			192+35	
080222	192+35	192+85	197+85	198+50	DG\PB\8"\900#\12'
Trans	198+50			199+25	
080223	199+25	199+90	204+90	205+40	DG\PB\11"\550#\12'

Key to Notes:

DG - Dense Graded Aggregate Base Section

LC - Lean Concrete Base Section

PB - Permeable Asphalt Concrete Base Section

8" or 11" - PCC surface thickness, inches

550# or 900# - design flexural strength for PCC mix, psi

14' or 12' - outside lane width, feet

Table 4. Key project personnel.

Colorado Department of Transportation (CDOT)

Ahmad Ardani, LTPP Coordinator

Al Eastwood, Resident Engineer

Brett Locke, Project Engineer

Tom McNeill, Asst. Project Engineer

Castle Rock Construction

Ralph Bell, Contractor

Jim Lauer, Superintendent

CTL/Thompson, Inc. - Geotechnical Engineers

Art Greengard, Jr., Project Engineer, Materials Sampling & Testing

Fred Braun, Field Sampling & Testing

Nichols Consulting Engineers, Chtd.

Norma Henderson, LTPP Observer

PRE-CONSTRUCTION

CONCRETE TRIAL BATCHING

Appendix B contains all information regarding the trial mix studies conducted on the following PCCP designs:

- CDOT Class P mix
- SHRP 550 psi flexural mix
- SHRP 900 psi flexural mix
- SHRP Lean Concrete Base (500 psi to 750 psi at 7-day strength)

As there was not an LTPP representative present when these mix designs were developed, the only information available is found in the reports from CTL/Thompson, Inc. to the contractor, Castle Rock Construction (appendix B).

CONSTRUCTION

SUBGRADE

Overview

The soil at the site varies from clayey sand to sandy clay, but is predominately sand to clayey sand. The vertical grade is an average of +1.4 percent, in the direction of traffic, with no horizontal curvature. For the experiment, the subgrade is classified as a coarse grained soil.

The equipment used for sections constructed in Phase 1, station 155+90 to 227+90 (sections 080217, 080220, 080221, 080222, 080223, 080224, 080259) were two to five scrapers (CAT 631E) and a dozer (CAT D9). The subgrade was prepared by cutting and filling at the same time on those sections requiring such. The soil was compacted with the weight of the equipment. Compaction was monitored by personnel from CTL/Thompson using a nuclear density gauge. No moisture was added as the water table was approximately 4.5 ft from the surface and the soil exhibited an acceptable level of moisture. A blade (CAT 140G) was used to prepare the subgrade for trimming. The subgrade was trimmed with a GOMACO 9500 using a stringline for grade control. Elevation measurements were taken on every section. Subgrade preparation for Phase 1, station 155+90 to 227+90, began approximately July 1, 1993, and was completed August 19, 1993. Subgrade preparation for Phase 2, station 101+40 to 155+60 (sections 080213, 080214, 080215, 080216, 080218, 080219), commenced the first week of October 1993 and was completed October 14, 1993. The procedures and equipment used were the same as previously listed for Phase 1.

The thickness of the subgrade varied, with six sections on fill (sections 080213, 080214, 080215, 080216, 080221, 080222) and six sections in cut (080217, 080218, 080219, 080220, 080223, 080224). The weather conditions during the subgrade preparation are unknown as the majority of this work was done without the presence of an observer.

Phase 1 - New Alignment

Section 080223

After placing and trimming the DGAB, it was discovered that the subgrade elevation was too high from station 200+40 to 201+25. All of the DGAB and approximately 2.5 in of subgrade were removed from this portion. The subgrade was then recompacted and new elevation measurements were obtained. At station 202+53, a "prairie dog hole" was filled and compacted with soil (fine sand) from the site.

Section 080222

The subgrade appeared to be poorly compacted with approximately 2 in of loose surface material. This section was not recompacted. A plate bearing test and FWD test were conducted at station 195+35.

Section 080221

The subgrade was prepared during different time intervals as this section contained an "access road" for the local residents to cut across the construction site. This road also allowed the construction truck traffic access from the plant to the site. The access road was located from station 187+25 to 190+95 in a north-south direction. The subgrade at this location received a great deal more compaction (from truck traffic) than the rest of the section. Eventually the access road was moved west of the section to approximately station 184+50 so that work could begin on this section. That portion which contained the old access road was brought to grade and tied into the rest of the section. The subgrade for this section was essentially constructed as two separate parts.

Section 080224

The subgrade appeared to be well-compacted with very little loose surface material. This section had a high volume of construction truck traffic as it was located 100 ft east of the 136th Avenue overpass being built.

Section 080220

The subgrade appeared to contain a high moisture content and some pumping was evident in the transition zone between sections 080220 and 080224 at station 169+10. (The site received approximately 1.5 in of rain two days prior to the subgrade preparation for the lean concrete base.) No further action was taken to correct the pumping.

Section 080217

This section is located in a "wetland-like" area which contains a high water table. From station 158+00 to 159+00, a soft spot was removed approximately 6 ft in depth and 6 ft in width in the travel lane. This area was replaced with material (fine sand) from the construction site. From station 159+00 to 160+55, a second soft spot was removed approximately 4 ft in depth and 6 ft in width in the travel lane. This was replaced with material (fine sand) from the construction site. In both instances, two scrapers (CAT 631E) and one loader (CAT D9N) were used to remove, replace, and compact the soil.

As the end-dump trucks backed up to the paver to deliver the lean concrete base, the subgrade exhibited evidence of pumping across the travel lane at the following locations: station 157+05; from station 158+05 to 160+55; and at station 161+55. CDOT's state inspectors requested that the subgrade be compacted with a steel-wheel roller just in front of the trucks.

Paving of the LCB continued although rolling did not appear to remedy the poor subgrade condition and no further action was taken.

Section 080259

The subgrade was in fair condition and contained hairline cracks at station 220+50. A water truck kept the subgrade moist as the section was paved. This section of subgrade was prepared without a representative present to gather any construction notes prior to paving.

Phase 2 - Removal & Reconstruction

Section 080216

The "old highway," which consisted of both asphalt concrete and portland cement concrete, was removed, crushed to approximately 6 in pieces by dropping it and hitting it with a blade, and used as fill to stabilize the subgrade. The fill was approximately 3 ft of old highway material with 2 ft of cover material (fine sand) obtained from the site. The subgrade surface did not appear smooth and no further finishing was done. FWD testing was conducted on the subgrade.

Section 080213

The fill on this section was approximately 4 ft of old highway material with 2 ft of cover material (fine sand) obtained from the site. The subgrade surface did not appear smooth and contained a divot 1-in in depth and 1/4-in in width which extended across both the travel and passing lanes (no further finishing was done). A plate bearing test and FWD test were conducted on the subgrade at station 111+15.

Section 080214

The fill on this section was approximately 6 ft of old highway material with 2 ft of cover material (fine sand) obtained from the site. The subgrade surface appeared to be well-compacted. A plate bearing test and FWD test were conducted on the subgrade at station 118+20.

Section *080215*

The fill on this section was approximately 10 ft of old highway material with 2 ft of cover material (fine sand) obtained from the site. The subgrade surface appeared to be well-compacted. A 24-in, Class-3 concrete pipe was previously placed at station 125+15 approximately 10 to 13 ft deep. A plate bearing test and FWD test were conducted on the subgrade at station 125+15. (It was determined that the pipe was too deep to affect the plate bearing results.)

Section 080218

This section consisted of an approximately 6 ft cut. The subgrade surface appeared to be well-compacted. FWD testing was conducted on the subgrade.

Section 080219

This section consisted of an approximately 8 ft cut. The subgrade surface appeared to be well-compacted. FWD testing was conducted on the subgrade.

DENSE GRADED AGGREGATE BASE (DGAB)

Overview

During Phase 1 of this experiment, four sections, 080224, 080223, 080222, 080221 (from station 169+40 to 205+40), were constructed using 4 in of Dense Graded Aggregate Base (DGAB). In Phase 2, four sections, 080213, 080214, 080215, 080216 (from station 101+40 to 128+10), were constructed using 6 in of DGAB. The DGAB for Phase 1 was placed on August 4-5, 1993 (080221, 080222, 080223) and August 11, 1993 (080224, 080221). The DGAB for Phase 2 was placed on October 6-8, 1993 (080213, 080214, 080215, 080216).

During both phases, the DGAB was delivered using belly-dump trucks and was spread with a blade (CAT 140G). The trucks drove on the subgrade to deliver the DGAB. The sections were compacted using a steel-wheel roller (CAT CS563) and water was added hourly using a water truck. The grade was maintained using the same stringline control as used for the subgrade. The DGAB was trimmed using a GOMACO 9500. Elevation surveys were obtained on all sections with DGAB.

The weather conditions during DGAB placement in Phase 1 were cool and overcast with light rain on August 4-9 and a heavy rainstorm (1.25 in) on August 10th. It was partly cloudy and warm on August 11th. Weather conditions during Phase 2 consisted of clear and warm conditions on October 6th, cool and overcast with light rain falling on October 7th, and cold and breezy on October 8th.

The DGAB was a Class 5 (table 5) and conformed to the Special Construction Requirements, Section 304 and was pit run material.

The sampling and testing requirements for the DGAB consisted of bulk sampling, moisture and density tests, and elevation measurements on 080223, 080222, 080221, 080224, 080216, 080213, 080216, 080214, and 080215, with plate bearing tests on sections 080222, 080213, 080214, 080215. See appendix D for specific materials sampling and testing plan for each section.

Table 5. SHRP dense graded aggregate base (DGAB)

Tubio 5. Dillita dell	ise graded aggregate base (B Grib)				
Physical Properties of Aggregates					
Sieve Analysis of Fine and Coarse Aggregate					
Sieve Size Class 5 (LL not greater than 3					
2 in.					
1 ½ in.	100				
1 in.	95 - 100				
3/4 in.					
No. 4	30 - 70				
No. 8					
No. 200	3 - 15				

Phase 1 - New Alignment

Section 080223

On August 19, 1993, the DGAB was replaced from station 200+50 to 201+25 because the subgrade was not to grade. The DGAB for this portion was recompacted with a steel-wheel roller and then trimmed in conjunction with the remaining portion of the section. No FWD testing was conducted.

Section 080222

A plate bearing test and FWD testing were conducted on this section. The DGAB appeared to be well-compacted with no apparent anomalies.

Section 080221

Placement of the DGAB began on August 5, 1993, stopped at station 185+95 and was completed on August 11, 1993. Traffic was still driving across the access road until August 16, 1993. No FWD testing was conducted.

Section 080224

The DGAB was erroneously placed in the 1000 ft transition area between 080221 and 080224. The DGAB was removed from this area with a scraper (CAT 631E) and was spread on 080224 with a blade (CAT 140G). Compaction was attained with the scraper and blade. Water was not added due to a heavy rainstorm (1.25 in) the previous evening. No FWD testing was conducted.

Phase 2 - Removal & Reconstruction

Section 080216

The DGAB was placed on October 7, 1993. The base appeared to be well-compacted. Water was not added due to light rain during the day. FWD testing was conducted. Base was in good condition.

Section 080213

The DGAB was placed on October 7, 1993. A plate bearing test and FWD testing were conducted on October 9th. The base was in good condition.

Section 080214

The DGAB was placed on October 8, 1993. A plate bearing test was conducted on October 9, 1993. FWD testing was conducted on October 11, 1993. The base was in good condition.

Section 080215

The DGAB was placed on October 8, 1993. A plate bearing test and FWD testing were conducted on October 11, 1993. The base was in good condition.

PERMEABLE ASPHALT TREATED BASE (PATB)

Overview

Four drainable sections (080224, 080221, 080222, 080223) were constructed which required placing 4 in of Permeable Asphalt Treated Base (PATB) on 4 in of the Dense Graded Aggregate Base (DGAB). The PATB serves as a drainage layer in the pavement structure. The DGAB is used below the PATB to prevent the contamination of the PATB by the migration of fines from the subgrade. Edge drains (trench with drain pipe) were constructed longitudinally along the outside edge of the travel lane to collect drainage water from the PATB (figure 5).

All PATB drain sections were constructed within the new alignment and are located from station 169+40 to 205+40. After the DGAB placement was completed, an area was trenched for the edge drains. This operation began on August 12, 1993 utilizing a backhoe (CAT E70B). A 1 ft trencher was initially utilized, however, problems were encountered trying to maintain a smooth, clean cut. The trencher was then replaced with the backhoe although this made the trench a few inches larger than the design width of 12 in. The area was trenched to a depth of 14 in and a width of 21 in. The trench was excavated continuously throughout the entire length of each PATB test section. When the trench was completed, a length of geotextile fabric (Typar, 100 percent spunbonded polypropylene, by Exxon Chemical), was placed in the trench with a minimum of 2 ft on either side of the trench. Next, approximately 2 in of the aggregate mixture (table 6) utilized in the PATB (minus the asphalt cement) was put in the bottom of the trench with a truck and shovel, and the collector drain pipe was placed on top with the perforated side down. The collector pipes consisted of 4 in diameter plastic, perforated pipe. Upon placement of the collector pipes, they were covered with a 6 in layer of the same aggregate base mixture. The geotextile fabric was then "folded back" over the aggregate (figure 5). Discharge outlet pipes consisting of 4 in diameter nonperforated rigid pipe were installed at 250 ft intervals. Two transverse interceptor drains (figure 6) were installed perpendicular to the section in the transition zone between drained and undrained base structural sections (at station 185+00 and station 169+00) with the same procedure outlined for the edge drains.

The PATB mix design is found in table 7 and the sieve analysis in table 8. All sections were paved going west against the eastbound direction of traffic. The PATB was placed across both lanes as well as across the trench with the edge drains. The PATB was delivered in end-dump trucks from a continuous mix plant (drum) approximately 10 miles from the site. The grade was controlled using a stringline and all transitions were tapered. Elevation surveys were performed on all PATB sections.

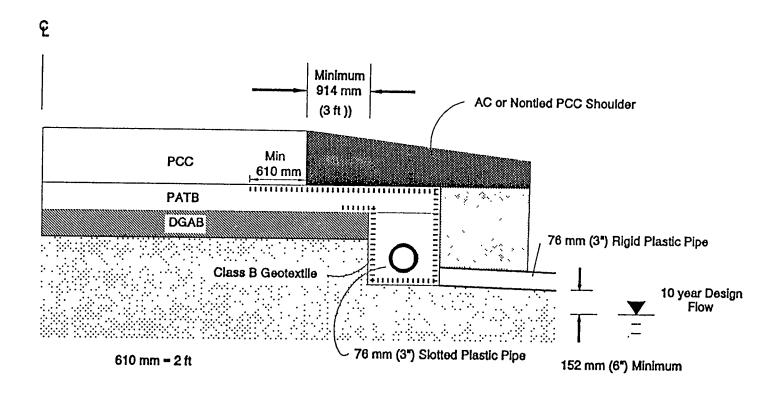


Figure 5. Edge drain detail.

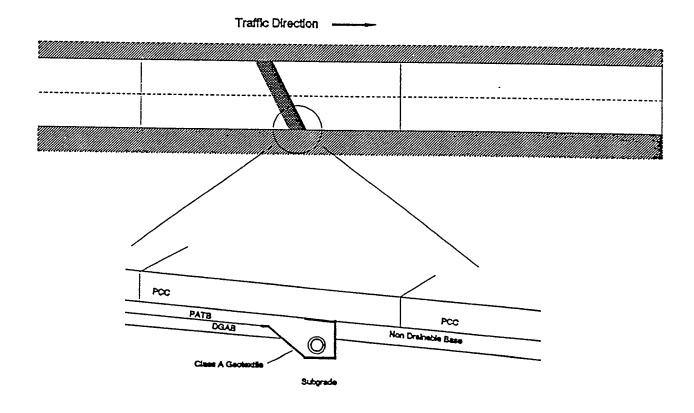


Figure 6. Transverse interceptor drain.

Table 6. SHRP edge drain backfill permeable asphalt treated base (PATB)

Sieve Analysis of Fine and Coarse Aggregates					
Sieve Size	Percent Passing % No. 57				
1 ½ in.	100				
1 in.	97				
¾ in.	58				
½ in.	13				
³⁄8 in.	4				
No. 4	1 '				
No. 8	1				
No. 50	1				
No. 200	0.3				

Percent Fractured Faces: 76%

Table 7. SHRP CDOT permeable asphalt treated base (PATB) mix design.

Sieve Size	CDOT #57 Specs. % Pass
2 in.	
1 ½ in.	100
1 in.	95 - 100
¾ in.	
½ in.	25 - 60
3⁄8 in.	
No. 4	0 - 10
No. 8	0 - 5
No. 16	
No. 30	
No. 50	
No. 100	
Material finer than #200	
Sieve (%):	0 - 2

Target Asphalt Content: 2.5%

Source & Grade of AC: SIN/SIN AC-10

Additive: 0%

Table 8. SHRP CDOT permeable asphalt treated base (PATB)

Physical Properties of Aggregates							
Sie	Sieve Analysis of Fine and Coarse Aggregate						
Sieve Size	Size #57 Sample	CDOT Specs. #57					
	% Pass	% Pass					
2 in.							
1 ½ in.	100	100					
1 in.	100	95 - 100					
¾ in.	86						
5∕3 in.	63	,					
½ in.	40	25 - 60					
3⁄8 in.	20						
No. 4	8	0 - 10					
No. 8	6	0 - 5					
No. 16	6						
No. 30	5						
No. 50	4						
No. 100	4						
Material							
finer than							
#200 sieve							
(%):	3.1	0 - 2					

% Moisture: 0.04% Asphalt: 2.96

Section 080223

The PATB was placed over a period of hours on August 20, 1993 with a Blaw-Knox 657 track mounted paver in three 13.5 ft wide passes beginning with the eastbound left shoulder. The air temperature at the time of placement varied from 65°F to 90°F. The average temperature of the PATB mix at the time of placement was 190°F. The average thickness was 4.8 in before compaction. The mix was compacted in two passes with an Ingersoll-Rand DA40 steel-wheel roller (10,000 lbs). From station 200+00 to 200+50 the PATB in pass 1 appeared dull which indicated there were perhaps too many fines in the mix. The PATB was not replaced.

Section 080222

The PATB was placed over a period of seven hours on August 23, 1993 with the same paver as above. The section was paved in three 13.5 ft wide passes beginning with the eastbound left shoulder. The air temperature at the time of placement varied from 67°F to 96°F. The average temperature of the PATB mix at the time of placement was 199°F. The average thickness was 5.0 in before compaction. The mix was compacted with the same equipment previously referenced. From station 195+50 to 195+75 of pass 1, the mix appeared slightly dry indicating the presence of fines. Also, from station 193+25 to 193+50, fines were apparent in the mix placed approximately 7 ft from the edge of pavement. The PATB was not replaced, but a load was rejected prior to placing at station 198+75.

Section 080221

The PATB was placed on August 23, 1993 with the same paver previously referenced. The section was paved in four passes due to the widened lane portion of this section. In this section, the fourth pass was only 8 ft wide. The time period for this section was 12.0 hours. The air temperature at the time of placement varied from 60°F to 91°F. The average temperature of the PATB mix at the time of placement was 179°F. The average thickness was 4.8 in before compaction. The mix was compacted in two passes with the same equipment previously referenced. The next day, August 24, 1993, it was discovered that a section of PATB 13 ft wide, in the eastbound right shoulder, from station 189+00 to 187+25, was too low and consequently two more inches of PATB was added. This was the portion of the section that contained the old access road. Also, from station 185+30 to 187+20 the PATB was removed with a small loader and replaced due to excessive fines. The surface had a dull and "cloudy" appearance. When the PATB was removed from this portion, the fabric on the edge drain was torn from station 186+40 to 186+50. The fabric was replaced with a 3 ft overlap of new fabric over the old fabric on either side.

Section 080224

The PATB was placed on August 24, 1993 with the same paver previously referenced. The section was paved in three 13.5 ft wide passes over a period of six hours. The air temperature at the time of placement varied from 80°F to 91°F. The average thickness of the PATB mix was 4.9 in before compaction. The mix was compacted with the same equipment previously

referenced. Some slight down drain was evident in three separate loads and they were rejected.

LEAN CONCRETE BASE (LCB)

Overview

Four non-drainable sections (080217, 080218, 080219, 080220) from station 140+75 to 168+80 were constructed which required placing 6 in of Lean Concrete Base (LCB) on the subgrade. LCB was placed on sections 080217 and 080220 during the construction of Phase 1 (August 30, 1993) and sections 080218 and 080219 during Phase 2 (October 14, 1993). The LCB was placed using a CAT SF550 paver with the end-dump trucks backing up on subgrade. The LCB was finished using a wet burlap drag, hand trowels, and long-handled steel floats. A Burke Wax Emulsion White D.O.T. curing compound was applied to the surface approximately 45 minutes after finishing during Phase 1 and 15 minutes after finishing during Phase 2. A second coat was applied within 24 hours prior to placing the PCCP surface. The LCB was placed in a 38 ft pass in Phase 1. A 32 ft width pass was placed in Phase 2 with an additional 6 ft shoulder placed October 25, 1993. The air temperature at the time of placement for Phase 1 was 70°F with overcast skies, and for Phase 2 was 45°F with overcast skies. Longitudinal joints were cut 1 ft to the right of centerline on all sections. Dowel baskets were anchored on all sections using steel nails driven with an air hammer. The lean concrete mix design is found in table 9 and the sieve analysis in table 10. Air content and slump were monitored in the field by CTL/Thompson, with air content specified between 4-9 percent and a maximum slump of 4 in.

Phase 1 - New Alignment

Section 080217

This section exhibited pumping across both lanes (see Subgrade section) as the LCB was being placed at the following locations: station 157+05; station 158+05 to 160+55; and station 161+55. The LCB mix changed at approximately station 161+55 from a 4 in slump to a 2 in slump. A visual inspection on September 7, 1993 yielded the anomalies listed in table 11. Overall, the finished surface appeared rough approximately 2.5 ft right of centerline, throughout the SHRP lane.

Section 080220

This section exhibited pumping across the travel lane (see Subgrade section) as the LCB was being placed at the following locations: station 166+60, 168+00. A visual inspection on September 7, 1993 yielded the anomalies listed in table 12. Overall, the finished surface appeared rough approximately 2.5 ft right of centerline throughout the SHRP lane.

Table 9. SHRP lean concrete base mix summary.

Table 9. Silki lean	concrete base mix summary.
Average Pr	roportion Properties
Cement	204 lbs/yd ³
Fly Ash	61 lbs/yd ³
AEA	As Needed
Sand	1550 lbs/yd ³
Coarse Aggregate (No. 57)	1600 lbs/yd ³
Water	255 lbs/yd ³ (30.6 gals)
VV3329202333333333	
Slump	3 - 4 inches
Air Content	7 - 9%
WC + P Ratio	0.96 lb/lb
Unit Weight	135 - 138 pcf
Compressive Strength of Test Cylinders:	
3 days	400 - 460 psi
7 days	550 - 750 psi
Portland Cement	Southwestern Type I/II Low Alkali
Fly Ash	Pozzolanic Bridger Class F
AEA	Conchem Pave-Air
Sand	Frei, Pit No. 7 (Platte River)
Rock	Frei, #57, Pit 6 (Clear Creek Quarry)

Table 10. SHRP CDOT lean concrete base mix design.

		ysical Properties of Ag	gregates				
Sieve Analysis of Fine and Coarse Aggregate							
	Size #57 Sample	CDOT 703 Specs.	Sand Sample %	CDOT 703 Specs.			
Sieve Size	% Pass	% Pass #57	Pass	% Pass			
2 in.							
1 ½ in.	100	100					
1 in.	99	95 - 100					
¾ in.	87						
½ in.	55	25 - 60					
3⁄8 in.	39			100			
No. 4	8	0 - 10	100	95 - 100			
No. 8	4	0 - 5	97				
No. 16			78	45 - 80			
No. 30			44				
No. 50			17	10 - 30			
No. 100			3	2 - 10			
Material finer							
than #200							
sieve (%):	0.5	1.0 max.	0.6	3.0 max.			

Table 11. Section 080217.

Location Stationing	Comment
156+60	transverse crack across the travel lane
157+25 to 157+50	round (2") depressions on the outside edge
157+75	LCB appears to have soft spots
158+20	transverse crack across the travel lane
158+20 to 158+25	segregation in outer wheel path - travel lane
158+75	transverse crack across the travel lane
159+30	2' from outer edge, LCB is gouged
159+50	transverse crack across the travel lane
160+36	transverse crack across the travel lane
160+70 to 160+80	low spot 3' wide, water pooled in bottom
161+30	transverse crack across the travel lane
161 +80	transverse crack across the travel lane

Table 12. Section 080220.

Location Stationing	Comment
162+80	transverse crack across the travel lane
163+30	transverse crack across the travel lane
163+55	segregation approx 6" wide, 2' long in midlane
163+80	transverse crack across the travel lane
164+30	transverse crack across the travel lane
164+60	transverse crack across the travel lane
164+80	small depression, 1" depth - 3' from the edge in travel lane
165+20	transverse crack across the travel lane
165+80	transverse crack across the travel lane
166+15	transverse crack across the travel lane

Phase 2 - Removal & Reconstruction

Section 080218

The LCB was placed on October 14, 1993 from 12:30 p.m. until 4:05 p.m. Light rain began' falling off and on about 3:05 p.m. The first ten trucks on the site were rejected due to high air content (≈11.5 percent). This section was paved with a 32 ft width pass. The shoulders were paved 12 days later (October 26, 1993) due to one week of heavy rain in the area. A visual inspection on October 21, 1993 revealed broken edges throughout the entire section. The finished surface was muddy and there were areas containing water stains. The mud was cleaned off at the request of CDOT inspectors.

Section 080219

The LCB was placed on October 14, 1993 from 4:05 p.m. until 7:50 p.m. Sunset occurred at approximately 6:20 p.m. and the final 250 ft of the section was placed in the dark using portable lights. The temperature was approximately 40°F with heavy rain beginning at 7:10 p.m. A visual inspection on October 21, 1993 revealed broken edges throughout the entire section. The finished surface was muddy and there were areas containing water stains. The mud was cleaned off at the request of CDOT inspectors.

PORTLAND CEMENT CONCRETE PAVEMENT (PCCP)

Overview

The experimental design included two levels of concrete slab thickness, 8 in and 11 in, and two levels of flexural strength, 550 psi and 900 psi as determined from third point loading tests at 14 days. The experiment also included two different lane widths, 12 ft and 14 ft. All sections were constructed with perpendicular joints with a uniform joint spacing of 15 ft. Dowels were placed mid-depth using basket assemblies and were aligned parallel to the longitudinal direction of the lane. The dowel baskets were anchored using 5/16 in diameter, 12 in steel pins with a 45° cut at the bottom. A piece of 3/16 in steel bar was welded onto the top of the pin to act as a hook and hold the baskets in place. Dowels were 18 in in length, spaced at 12 in on center and coated with grease. Dowel bars were 1-1/4 and 1-1/2 in diameter for the 8 in and 11 in thick pavements, respectively. The dowel bar alignments were not checked after paving.

All sections were constructed with a slip-form paving operation which incorporated the side-dump procedure. First, the concrete was dumped into a side belt which fed to the track mounted spreader (GOMACO PS60) where the concrete was distributed by augers across the lane. Next, a track mounted slip-form paver (CAT SF550) consolidated the concrete with 26 internal vibrators spaced 18 in apart at a depth of 6 in below the surface. Screeds then struck off the concrete to its design thickness. Following this process, a wet burlap drag and a mechanical oscillating float were used to ready the surface for final finishing. The edges were kept straight and smooth with hand trowels. Two long-handled steel floats, one on either side,

were used to smooth and level the surface. An astro-turf drag was then pulled across the surface for texture. A string line was used to make an indentation across the lane at all joint locations (every 15 ft). This was followed by transverse tining with a tining machine utilizing a 14 ft bar with metal tines. Finally, a white wax-base curing compound was applied to the surface within 45 minutes of placing the concrete.

As the paver proceeded, tie bars were manually placed into a tie bar inserter and then mechanically inserted into the concrete. Tie bars were placed at the inside shoulder (non-SHRP lane) and at the centerline longitudinal joint. The bars were held down for approximately 15 seconds to allow the concrete to envelope the bar and then the device was lifted up for the next tie bar. A measuring wheel with a counting device was mounted to the paver and indicated when to insert the bars. The tie bars were 3 ft long, epoxy coated deformed No.5 bars of grade 40 steel, spaced at 30 in on center.

For both the 550 psi and 900 psi concrete mixes, the target values for slump were 1 to 2-1/2 in and for air content were 5 to 8 percent. Slump and air content values were monitored in the field by CTL/Thompson. These tests were taken from the first three delivery trucks at each section, then every hour until the mix (psi) changed. The 550 psi mix design is found in table 13 and the sieve analysis in table 14. The 900 psi mix design is found in table 15 and the sieve analysis in table 16. The CDOT Class P Standard mix design (section 080259) is found in table 17 and the sieve analysis in table 18.

Table 13. SHRP 550 psi mix summary, average proportion properties

Cement	399 lbs/yd ³
Fly Ash	100 lbs/yd ³
AEA	6 3 ozs/yd³
Sand	1430 lbs/yd ³
Rock	1720 lbs/yd ³
Water	236 lbs/yd ³
Slump	1-3/4 inches
Air Content	6.4%
WC+P Ratio	0.47 lb/lb
Density	143.3 pcf
Flexural Strength: 7 days 14 days	520 psi 572 psi
Portland Cement	Southwestern Type I/II Low Alkali
Fly Ash	Pozzolanic Bridger Class F
AEA	Conchem Pave-Air
Sand	Frei, Pit No. 7 (Platte River)
Rock	Frei, #57, Pit 6 (Clear Creek Quarry)

Required average 14-day flexural strength: 525 to 575 psi Allowable variation of average strength: 165 psi max. Cumulative variation of average strength: 25 psi actual Table 14. SHRP - CDOT 550 psi mix design - physical properties of aggregates.

Sieve Analysis of Fine and Coarse Aggregate				
Sieve Size	Size #57 Sample	CDOT 703 Specs.	Sand Sample	CDOT 703 Specs.
	% Pass	% Pass - #57	% Pass	% Pass
2 in.				/
1-1/2 in.	100	100		
1 in.	99	95 - 100		
3/4 in.	87			
1/2 in.	55	25 - 60		
3/8 in.	39			100
No. 4	8	0 - 10	100	95 - 100
No. 8	4	0 - 5	97	
No. 16			78	45 - 80
No. 30			44	
No. 50			17	10 - 30
No. 100	\		3	2 - 10
Material finer				
than #200				
sieve (%)	0.5	1.0 max.	0.6	3.0 max.

Table 15. SHRP 900 psi mix summary - average proportion properties.

Cement Cement	749 lbs/yd ³	
	150 lbs/yd ³	
Fly Ash	<u> </u>	
AEA	3.0 ozs/yd ³	
Sand	935 lbs/yd ³	
Rock	1865 lbs/yd³	
Water	257 lbs/yd ³	
Slump	1-1/2 inches	
Air Content	5.7%	
WC+P Ratio	0.29 lb/lb	
Density	146.4 pcf	
Flexural Strength:		
7 days	845 psi	
14 days	905 psi	
Portland Cement	Southwestern Type I/I Low Alkali	
Fly Ash	Pozzolanic Bridger Class F	
AEA	Conchem Pave-Air	
WRA	Conchem 50 (4 ozs per cwt)	
Sand	Frei, Pit No. 7 (Platte River)	
Rock	Frei, #57, Pit 6 (Clear Creek Quarry)	

Required average 14-day flexural strength: 860 to 940 psi Allowable variation of average strength: 250 psi max. Cumulative variation of average strength: 45 psi actual Table 16. SHRP - CDOT 900 PSI mix design - physical properties of aggregates.

	Sieve An	alysis of Fine and Coar	rse Aggregate	o or aggregates.
Sieve Size	Size #57 Sample % Pass	CDOT 703 Specs. % Pass #57	Sand Sample % Pass	CDOT 703 Specs. % Pass
2 in.			70 1 433	/0 Fass
1-1/2 in.	100	100		
1 in.	99	95 - 100		
3/4 in.	87		· · · · · · · · · · · · · · · · · · ·	
1/2 in.	55	25 - 60		
3/8 in.	39			100
No. 4	8	0 - 10	100	95 - 100
No. 8	4	0 - 5	97	
No. 16			78	45 - 80
No. 30			44	
No. 50			17	10 - 30
No. 100			3	2 - 10
Material finer than #200 sieve (%)	0.5	1.0 max.	0.6	3.0 max.

Table 17. SHRP - CDOT class P mix design - average proportion properties.

Cement	565 lbs/yd ³	
Fly Ash	113 lbs/yd ³	
AEA	5.6 ozs/yd³	
WRA (Conchem 50 @ 2.5 ozs/cwt)	17.0 ozs	
Sand	1200 lbs/yd ³	
Coarse Aggregate (No. 57)	1730 lbs/yd ³	
Water	247 lbs/yd ³ (29.7 gals)	
Slump	1-1/2 inches	
Air Content	6.2%	
WC+P Ratio	0.36lb/lb	
Unit Weight	142.2 pcf	
Temperature	65°F	
Compressive Strength of Test Cylin-		
ders:	1850 psi	
24 hours	3770 psi	
3 days	5035 psi	
7 days	6315 psi	
28 days		
Portland Cement	Southwestern Type I/I Low Alkali	
Fly Ash	Pozzolanic Bridger Class F	
AEA	Conchem Pave-Air	
Sand Frei, Pit No. 7 (Platte River)		
Rock	Frei, #57 Blend (Pit No. 2)	

Table 18. SHRP - CDOT class P standard mix design - physical properties of aggregates.

	Sieve Analysis of Fine and Coarse Aggregate								
Sieve Size	Size #57 Sample	Size #4 Sample	55/54 Blend #57/#4		703 Specs Pass	Sand Sample	CDOT 703 Specs		
	% Pass	% Pass	% Pass	#57	#467	% Pass	% Pass		
2 in.		100	100		100		/		
1-1/2 in.	100	96	98	100	95-100				
1 in.	99	57	80	95-100					
3/4 in.	87	18	56		35-70				
1/2 in.	55	1	31	25-60					
3/8 in.	39	1	22		10-30		100		
No. 4	8	0.5	5	0-10	0-5	100	95-100		
No. 8	4		3	0-5		97			
No. 16						78	45-80		
No. 30						44			
No. 50						17	10-30		
No. 100						3	2-10		
Material									
finer than #200 sieve (%)	0.5	0.3	0.4	1.0 max	1.0 max	0.6	3.0 max		

The portable batch plant was located on site and contained two bins; one for cement and one for fly ash. The mixing equipment was a central batch (12 yd³) and was computerized. A badger meter was used for measuring water. The water used for the batch plant was obtained from the City of Brighton's domestic water supply. A concrete plant inspection was conducted on July 13, 1993 and was found to be satisfactory.

All sections in Phase 1 (080259, 080220, 080221, 080222, 080223, 080224, and 080217) were paved going west against the direction of traffic (eastbound lanes). All sections in Phase 2 (080213, 080214, 080215, 080216, 080218, and 080219) were paved in the direction of traffic (eastbound).

Phase 1 - New Alignment

Section 080223

The 550 psi concrete was placed on September 3, 1993 from 7:50 a.m. until 10:35 a.m. in a 38 ft pass. The air temperature varied from 55°F to 68°F. Twelve air content and slump tests were conducted on this section with two of each required for the bulk samples. The average air content was 6.3 percent and the average slump was 1.7 in. Personnel from CDOT's materials testing laboratory were on site to conduct air content, slump, and unit weight tests in addition to those required by SHRP/LTPP. A comparison of these tests conducted side-by-side (CDOT vs. CTL/Thompson) from the same batch resulted in an unacceptable difference

(greater then 0.5 percent as per CDOT) between the two (CTL/Thompson air = 8.0 percent and CDOT air = 9.3 percent). Paving was halted at station 201+00 for approximately 15 minutes. These tests were repeated twice more and then a different meter was brought out for CTL/Thompson to use. Three more tests were conducted and found to be within the acceptable range. From station 199+25 to 202+00 the dowels were greased on the wrong end and, had to be greased again as per a request by CDOT. The transition from 11 in PCCP to 8 in PCCP was started at station 199+25 and completed at 198+50. The transition from the 550 psi mix to the 900 psi mix was completed at station 198+75.

Section 080222

The 900 psi concrete was placed on September 3, 1993 from 11:20 a.m. until 2:30 p.m. in a 38 ft pass. The air temperature varied from 70°F to 78°F. Eight air content and four slump tests were conducted on this section with three of each required for the bulk samples. The average air content was 5.0 percent and the average slump was 2.2 in. Personnel from CDOT's materials laboratory were on site to conduct air content, slump, and unit weight tests. A comparison of the side-by-side tests conducted resulted in acceptable values. Paving stopped at station 196+00 for 10 minutes, at station 195+35 for 15 minutes, and at station 195+15 for 5 minutes, while waiting for tests to be run. At station 194+00 side panels on the screed had to be adjusted resulting in paving being stopped for 10 minutes. The transition from the 900 psi mix to the 550 psi mix was completed at station 191+75.

Section 080221

The 550 psi concrete was placed on September 3, 1993 from 4:00 p.m. until 6:10 p.m. in a 38 ft pass. The air temperature varied from 76°F to 80°F. Nine air content and four slump tests were conducted on this section with one of each required for the bulk samples. The average air content was 8.0 percent and the average slump was 1.9 in. A 4 in pipe had been installed and was discovered "sticking out of the PATB surface" approximately 2 ½ in at station 190+25, about 3 ft from outside edge of the travel lane. After a discussion with CDOT personnel and the contractor, it was not known for what purpose this pipe was intended. The pipe was sawed off flush with the PATB, capped, and paved over. At station 186+00, the dowel basket in the passing lane (non-SHRP) was pulled out during the paving operation and not replaced.

Section 080224

The 900 psi concrete was placed on September 7, 1993 from 8:00 a.m. until 3:05 p.m. when a severe windstorm (low visibility and heavy dust) moved into the area. At approximately 3:10 p.m. it began raining heavily along with the severe winds. At this time, the crew began trying to cover the new pavement but were struggling due to the strong winds and heavy rainfall. At 3:45 p.m. the section from station 185+30 to 172+90 was finally covered with a heavy plastic tarp. At 3:55 p.m., a construction joint was placed at station 172+90 within the monitoring section. The 1000 ft transition between 080221 and 080224 (westbound direction) was paved using the 550 psi mix. The 900 psi mix began at station 176+40. The PATB

fabric located on the edge drains appeared to be in poor condition with tears from station 176+15 to 175+90. Along the entire length of 080224, the edge drains were damaged and contained a "coating" of soil and PCC runoff from the sawcutting process. This was pointed out to CDOT's engineer on the project with the suggestion that the edge drain be checked for damage and any repairs noted. The fabric was torn and dirty, and the trench crushed up to 6 in in some locations due to the paver running over it.

The 900 psi concrete paving began at station 172+90 (the construction joint from previous day's storm - 2 in of rain) on September 8, 1993 at 7:30 a.m. and was completed at 11:05 a.m. The air temperature varied from 45°F to 60°F. The belt on the feeder to the spreader broke at station 169+90 at 10:18 a.m. and five trucks were rejected at 10:50 a.m. because their time limit expired. The paving operation began at 10:53 a.m. and stopped at station 169+25 due to the belt breaking again. A halt was called on paving operations for the day until a new belt could be placed on the spreader.

Three air content and three slump tests were conducted on this section. A bulk sample was not taken on this day due to extreme weather conditions. The average air content was 5.8 percent and the average slump was 1.5 in. On the following day, seven air content and seven slump tests were conducted on the portion from the construction joint westbound to the beginning of the section at station 169+40. One test for each was required along with the bulk sample. The average air content was 6.8 percent and the average slump was 2.1 in.

Section 080220

The 900 psi concrete for this section was placed on September 9, 1993 from 7:15 a.m. until 11:10 a.m. in a 38 ft pass. The air temperature varied from 55°F to 68°F. Five air content and five slump tests were conducted on this section with two required for the bulk samples. The average air content was 6.3 percent and the average slump was 1.9 in. The transition from 11 in PCCP to 8 in PCCP began at station 162+65 and was completed at station 162+05. The transition from the 900 psi mix to the 550 psi mix was also completed at station 162+05.

A third coat of curing compound was applied to the lean concrete base because the second coat required by the experimental design had been applied more than 24 hours prior to paving. (This was done before the rainstorm and the equipment problems mentioned above. The specifications called for an application of the curing compound within 24 hours of paving.) The curing compound was applied from station 167+80 to 162+65. At station 166+80 the spreader was stopped for 9 minutes due to the wet conditions of the soil on the site. The spreader was stuck and had to be pulled out using the paving equipment.

Section 080217

The 550 psi concrete for this section was placed on September 9, 1993 from 12:30 p.m. until 4:15 p.m. The air temperature varied from 72°F to 80°F. Six air content and six slump tests were conducted on this section with three required for the bulk samples. The average air

content was 6.9 percent and the average slump was 1.3 in. The forms on the paver were too large (10 in) for the 8 in lift required. The paver was halted at station 161+00 from 1:10 p.m. until 1:37 p.m. to shorten the forms. From approximately station 159+00 to station 157+00 the spreader was sinking on the outside edge of the SHRP lane due to heavy rain in the area. The spreader had to be supported with wooden planks and chunks of old concrete highway.

Section 080259

This section is a control section for the State of Colorado and was paved with their standard 650 psi concrete mix. Paving began at 7:10 a.m. and concluded at approximately 12:00 p.m. The air temperature varied from 55°F to 80°F. Three air content tests yielded 8,6, and 5.1 percent air. The slump was maintained at 2 in. Overall, no major interruptions were encountered at this section.

Phase 2 - Removal & Reconstruction

Section 080216

The 900 psi concrete was placed on October 11, 1993 from 9:30 a.m. until 2:10 p.m. The air temperature varied from 45°F to 70°F. Paving stopped at station 105+90 for 7 minutes and at station 107+00 for 8 minutes while waiting for delivery trucks. The transition from the 900 psi mix to the 550 psi mix was completed at station 107+50 and from 11 in PCCP to 8 in PCCP at station 107+50. Six air content tests and six slump tests were conducted with one required for bulk sample. The average air content was 7.3 percent and the average slump was 2.2 in.

Section 080213

The 550 psi concrete was placed on October 11, 1993 from 3:40 p.m. until 6:00 p.m. The paving stopped at station 110+15 for 15 minutes due to equipment problems. The air temperature varied from 70°F to 72°F. Five air content tests and five slump tests were conducted with one required for bulk sample. The average air content was 6.1 percent and the average slump was 1.0 in.

Section 080214

The 900 psi concrete was placed on October 13, 1993 from 7:15 a.m. until 10:00 a.m. at station 114+50 with 900 psi mix. The air temperature varied from 50°F to 65°F. The transition from the 900 psi mix to the 550 psi mix was completed at station 121+75. Five air content tests and five slump tests were conducted with one required for bulk sample. The average air content was 7.2 percent and the average slump was 2.3 in.

Section 080215

The 550 psi concrete was placed on October 12, 1993 from 10:20 a.m. until 2:30 p.m. The air temperature varied from 65°F to 72°F. The 550 psi mix was placed to station 128+30. Two air content tests and two slump tests were conducted with one required for bulk sample. The average air content was 6.7 percent and the average slump was 1.0 in.

Section 080218

The 900 psi concrete was placed on October 21, 1993 from 10:00 a.m. until 3:50 p.m. The air temperature varied from 40°F to 55°F. The paving stopped at station 141+25 for 2 hours and 40 minutes due to equipment problems (broken belt on the feeder). The paving stopped again for 20 minutes at station 143+40 because the end-dump trucks were getting stuck in the mud. (Site was extremely wet and muddy due to heavy rainstorms the previous 7-day period.) Dowels were accidentally torn up by the paving equipment at station 141+50 in the SHRP lane. The dowels were not replaced. One air content test and one slump test was conducted. The air content was 6.6 percent and the slump was 2.5 in.

Section 080219

The 550 psi concrete was placed on October 22, 1993 from 8:45 a.m. until 1:10 p.m. The air temperature varied from 38°F to 48°F. Paving on this section progressed smoothly. Four air content tests and four slump tests were conducted with one required for bulk sample. The average air content was 6.3 percent and the average slump was 1.6 in.

SUMMARY

SUBGRADE

High groundwater table, rain and pumping in some sections during subsequent layer placement are the primary conditions of note on the new alignment sections. On the old highway, the embankment consisted of various thicknesses of crushed and pulverized material of the old highway, overlain with fill of fine sand from a cut area.

DENSE GRADED AGGREGATE BASE (DGAB)

The placement of the DGAB on eight of the thirteen sections proceeded without any major problems. The other five sections did not require DGAB.

PERMEABLE ASPHALT TREATED BASE (PATB)

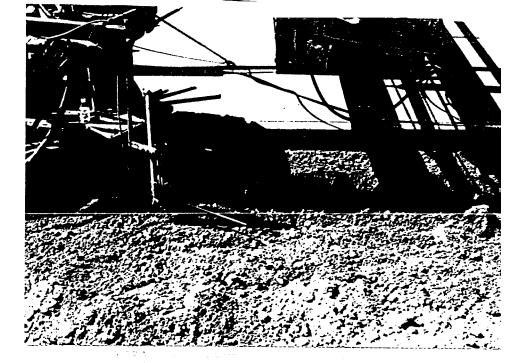
There were some minor problems encountered during the placement of the PATB. These consisted primarily in the trenching of the DGAB and SG. The problem was corrected by using a backhoe instead of a trenching machine. In section 080221, the mix placed was too fine in areas and removed and replacement was performed. (See the section entitled Permeable Asphalt Treated Base.)

LEAN CONCRETE BASE (LCB)

No obvious problems were noted with regard to the placement of the lean concrete base other than those that were weather related. (See section titled Lean Concrete Base.)

PORTLAND CEMENT CONCRETE PAVEMENT (PCCP)

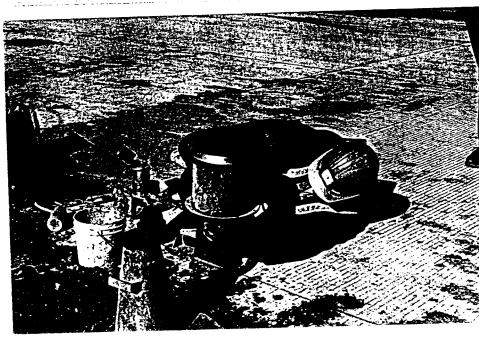
Again, weather and equipment breakdown created some problems with the PCCP paving; otherwise the work met the intentions of the experiment design. The contractor felt the placement of the 550 psi mix was easier to work with due to the high plasticity of the 900 psi mix.

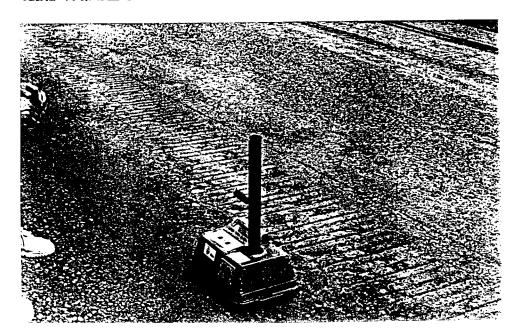

JOINTS

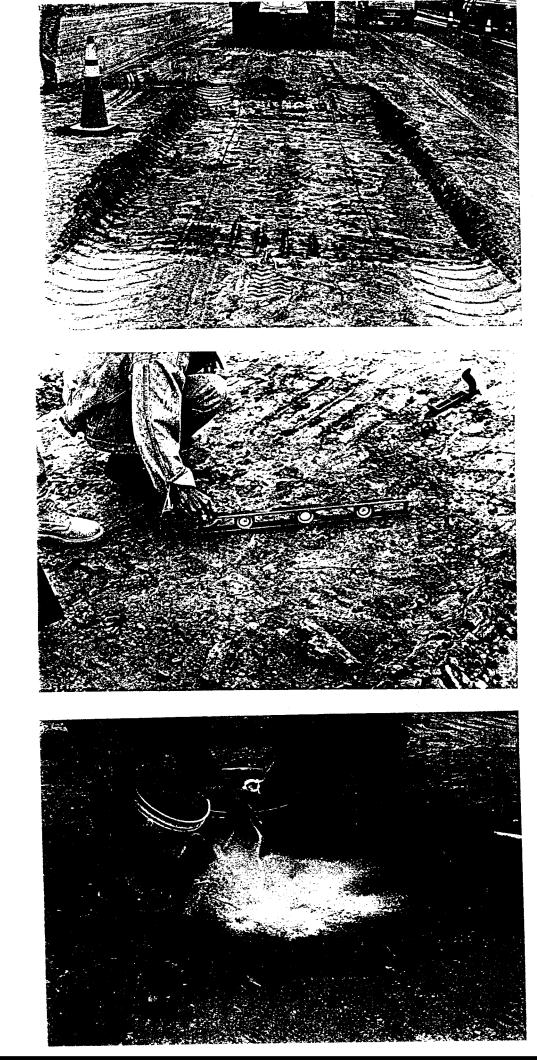
All joints were cut within 8 hours and depended upon the set time of the 550 psi mix and the 900 psi mix. The joints were cut with a diamond wheel sawcutter and were sawed twice to widen. The joint sealant, Dow Corning 888 silicone sealant, was placed after the second cut. The shoulder joint along all sections was sawn full depth.

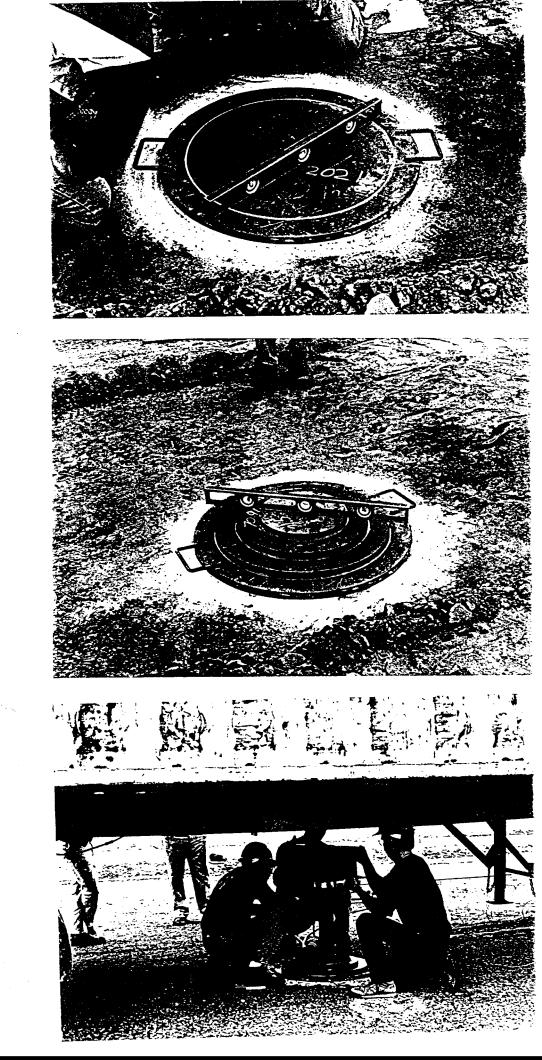
In general then, the SPS-2 construction met the requirements of the experiment and should provide valuable performance data for many years to come.

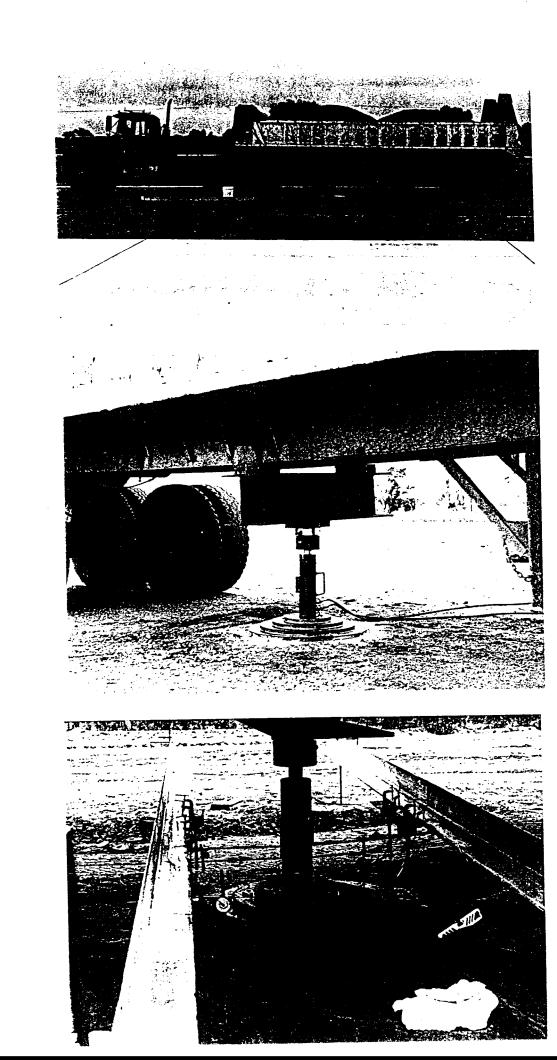

APPENDIX A PROJECT PHOTOGRAPHS

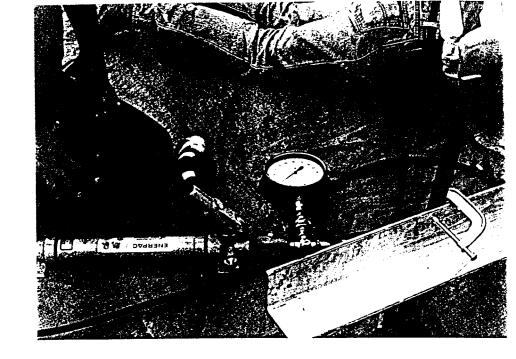


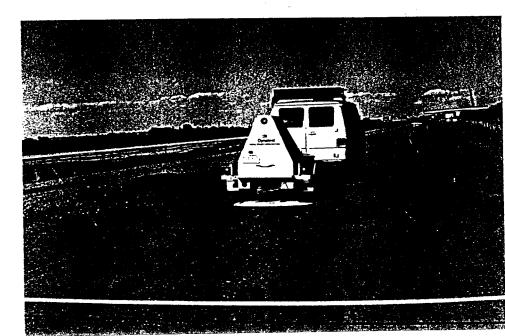


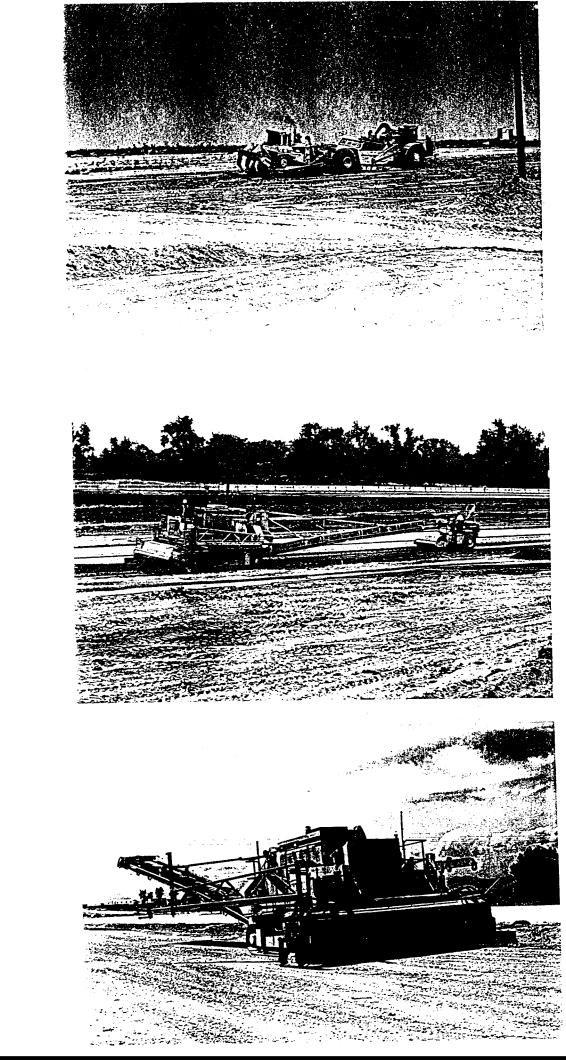


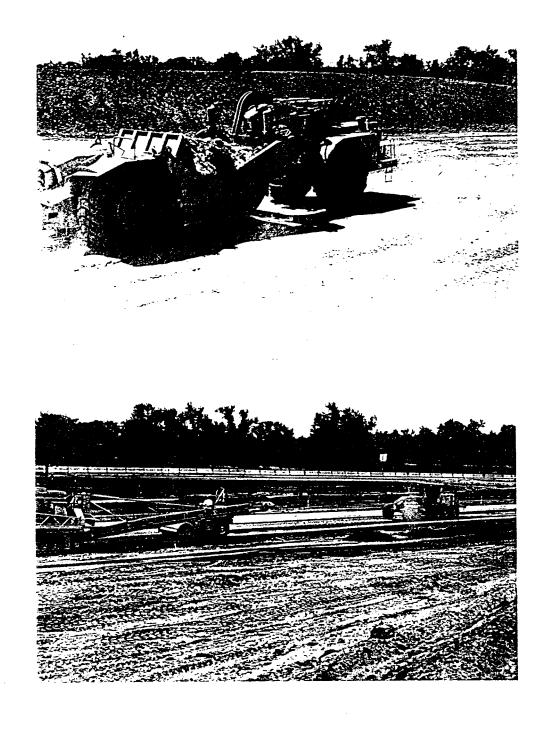


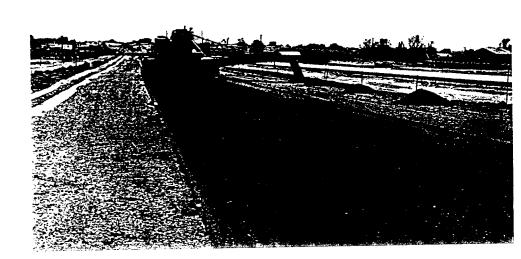














APPENDIX B

MATERIAL PROPERTIES

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS: PROJECT LEVEL LAB DATA SHEET LOS

SHEET OF 14

STATE CODE SECTION ID 08/00

1				, <u>.</u>
1	2	3	4	5
PROJECT LAYER CODE	MATERIAL CODE	INVENTORY LAYER NUMBER 1	INVENTORY LAYER NUMBER 2	COMMENTS (50 characters or less) (Use an extra sheet if necessary)
4 MHHRRMHHIDM	+++13014181-1445141 			Clayey Sand with Grave Silty Sand Sandy Clay Well Graded Sand with Silt Sandy Legn Clay Soil - Aggregate Mixture (DGAB) Asphalt Treated Base (ATB) Lean Concrete Base (LCB) PCC Clayey Sand Poorly Graded Sand with Silt
 —				
U I				
-				
∥ ∣				
			<u> </u>	
			_ —	
 				
∦ —				

GENERAL REMARKS:		
CHECKED AND APPROVED, DATE V. DIMOUNDY 6-23-94 LTPP REPRESENTATIVE 9-19-94		
Affiliation NCE		

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - MEASUREMENT DATA LAB DATA SHEET LOSA

SHEET Z OF 14

STATE CODE SECTION ID

CONSTRUCTION NUMBER

1	2	3	4	5	6	7	8	9	10	11	12	13
LAYER	PROJECT LAYER	LAYER	LAYER	BEFO	RE SECTION		WITH	IN SECTION		AFTER SECTION		
NUMBER	CODE	DESCRIPT.	TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE
1	K	07	<u> 3</u> <u>S</u>	UNK/ft*		8	TINK/_ft*		4	UNK/ft*	204	
023	E	01 Q 513/1	GB PC	- <u>1</u> 2 · <u>0</u>	- <u>0</u> 4	<u>8</u>	5.8 _11.4	- D -	- 5 - 1	- I I : 9	<u>-</u> - <u>-</u>	8
	-									· -		
	_									- · -		
							:-					
										: _		
	_											
	-											
	-				[^ · _					
	-										[
	-											
	-											
	-											

See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet; enter depth to refusal in feet if found within 20 feet and cross out "UNK".

CHECKED AND APPROVED, DATE Norma Denderson 9-19-94 LTPP REPRESENTATIVE Affiliation NCE

****************	SPS	LABORATORY	TESTING	DATA	SHEET	****************
				~	51.661	***************************************

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - ANALYSIS LAB DATA SHEET LOSB

SHEET

STATE CODE SECTION ID

CONSTRUCTION NUMBER

1	2	3	4	5	6	7	8
LAYER NUMBER	PROJECT LAYER CODE	LAYER DESCRIPT.	LAYER TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	COMMENT CODE	COMMENT NOTE (50 characters or less) (Use an extra sheet if necessary)
1	R	07	<u>S</u> <u>S</u>	(UNK)ft)*	204	_ _ _	
<u>0</u> <u>2</u> <u>0</u> <u>3</u>		99 — — — — —	<u>용</u> 		304	- - P - - - - - - - - - -	material code derived from 080214
	_ _ _						
	<u> </u>					_ _ _	

* See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet at the nearest adjacent probe: enter depth to refusal in feet if found within 20 feet and cross out "UNK". General Remarks

CHECKED AND APPROVED,	DATE
V. Almauson 9.	-14-94
SHRP REPRESENTATIVE	,
Affiliation_NCE	

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - MEASUREMENT DATA LAB DATA SHEET LOSA

SHEET 3 OF 14

STATE CODE SECTION ID

CONSTRUCTION NUMBER

	2	1	크
		0	1
=			

				_ 	,		~						
1	2	3	4	5	6	7	8	9	10	11	12	13	
LAYER	PROJECT LAYER	LAYER	LAYER	BEFO	RE SECTION		WITH	IN SECTION		AFT	AFTER SECTION		
NUMBER	1	DESCRIPT.	TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	
1 -	K	07	<u> ప</u> ్త	UNK/ft*		<u>-</u> _	UNKft*		4	UNK/ft*		8	
013 013	出	05	GIE!	ō Ø	- <u>0</u> -	81N1	5·9 8· 1	- <u>ō</u> -	5	<u>-</u>	- 04	80 1 - 1 - 1	
	_									· _			
	_												
	-												
	-												
	-												
	-												
	-												
							; -						
	_												
		[:-						
	_						[
	_												
	_												

See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet; enter depth to refusal in feet if found within 20 feet and cross out "UNK".

GENERAL REMARKS:

CHECKED AND APPROVED, DATE N Denderson 9-19-94 LTPP REPRESENTATIVE Affiliation NCE

***************	SPS LABORATORY	TESTING DATA	SHEET *************	*****	*****
LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - ANALYSIS LAB DATA SHEET LOSB				SHEET	_OF

STATE CODE

SECTION ID

CONSTRUCTION NUMBER

	TON NOIDE	·	일 				
1	2	3	4	5	6	7	8
LAYER NUMBER	PROJECT LAYER CODE	LAYER DESCRIPT.	LAYER TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	COMMENT CODE	COMMENT NOTE (50 characters or less) (Use an extra sheet if necessary)
1	K	07	<u> </u>	(UNK)ft)*	204	_1_12	adjacent 080216 - derived material code
<u>02</u> <u>03</u> 	上王 —	05 03 	<u> </u>	<u>5</u> .9 8.1 :	308	- - L - - - - - -	adjacent 080214 - derived material code
						_ _ _	
				:_			
	_						
	 					_ _ _	
	-					- - -	

* See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet at the nearest adjacent probe: enter depth to refusal in feet if found within 20 feet and cross out "UNK".

General Remarks _____

CHECK	KED	AND	APPRO	OVED,	DATE
N.6	er	rde	150n	_ 9-	DATE 19-94
SHRP	REI	PRESI	CTATKE	[VE	
Aff1]	liat	cion	NCE	-	

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - MEASUREMENT DATA LAB DATA SHEET LOSA

SHEET 4 OF 14

STATE CODE
SECTION ID
CONSTRUCTION NUMBER

	7			,								
1.	2	3	4	5	6	7	8	9	10	11	12	13
LAYER	PROJECT	TAVED	T AVED	BEFOR	RE SECTION		WITH	IN SECTION		AFT	ER SECTION	Ŋ
NUMBER	LAYER CODE	LAYER DESCRIPT.	LAYER TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE
1	A	07	<u>22</u>	UNK/ft*		180	UNK/ft*		8	UNK/ft*	217	
0 Z 0 3	Ę Ī	0.5 0.3	. ଧ <u>ଫ</u>	8:3	- <u>0</u> 4	- 80 - 1	5.9 8.4	- <u>-</u>	5 5	8:5	308 _04	<u>-</u> - <u>-</u> - <u>-</u> <u>-</u> -
	-			 · -								
	- .											
	_											
	-											
	_						' -					
	–											
				: -			: -		1			
	_			: -			: -					
	_									: _		
	_		<u> </u>							:-		
	_											
	-											
												

* See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet; enter depth to refusal in feet if found within 20 feet and cross out "UNK".

GENERAL REMARKS:

CHECKED AND APPROVED, D	ATE
N. Senduson 9-	19-94
LTPP REPRESENTATIVE	
Affiliation NCE	

LTPP LABOR	RATORY MA	********* ATERIAL HAN EMENT LAYER ATA SHEET L	DLING AND '	TESTING	BORATORY 1	FESTING DAT	`A SHEET ***********************************
STATE CODE SECTION II CONSTRUCT)	<u>0</u> Z	08 14 01				
1.	2	3	4	5	6	7	8
LAYER NUMBER	PROJECT LAYER CODE	LAYER DESCRIPT.	LAYER TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	COMMENT CODE	COMMENT NOTE (50 characters or less) (Use an extra sheet if necessary)
1	A	07	<u> </u>	(UNK)ft)*	217	_ _ _	
0 <u>2</u> <u>2</u> <u>3</u>	Ħ	<u>이 5</u> 이 3	<u>& B</u> <u>P</u> <u>C</u>	<u>5</u> · <u>9</u> 	308 -04	_ _ _	
					 	_ _ _	
						_ _ _	
						_ _ _	
						_ _ _	
				:_		_ _ _	
* See the probe: ent	shoulder er depth	auger prob	oe logs (Fo	orm SO5); circle	"UNK" if n	o refusal	was found within 20 feet at the nearest adjacent

* See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet at the nearest adjacent probe: enter depth to refusal in feet if found within 20 feet and cross out "UNK".

General Remarks

M. Hender	APPROV	ED,	DATE 19 <i>-94</i>
SHRP REPRESEN Affiliation	TATIV	E	

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - MEASUREMENT DATA LAB DATA SHEET LOSA

SHEET 5 OF 14

STATE CODE SECTION ID CONSTRUCTION NUMBER

1	2	3	4	5	6	7	8	9	10	11	12	13
LAYER	PROJECT LAYER	LAYER	LAYER	BEFO	BEFORE SECTION			IN SECTION		AFT	ER SECTION	γ
NUMBER	CODE	DESCRIPT.	TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE
1	<u>C</u>	07	<u>5</u> 5	UNK/ft*		8	UNKft*		4	UNK/ft*		8
02	E	0.5 0.3	99. BIO	-II:4	- <u>ā</u> 4	8 1 2	(o. o _ 1 1 · 1	_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _	<u>S</u>			3
	-			 · -								
	_			· -								
	_									 · -		
	-						· -					
	-									· -		
	-										-	
	-						;-					
	-						' -					
	-									· -		
				' -								
	-			· -								
	_											

See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet; enter depth to refusal in feet if found within 20 feet and cross out "UNK".

GENERAL	REMARKS	:
		•

CHECKED AND APPROVED, DATE	
checked and approved, date N. Dinguson 9-19-94	-
TPP REPRESENTATIVE	
Affiliation NCE	

**************************************	SPS	LABORATORY	TESTING	DATA	SHEET	**************
--	-----	------------	---------	------	-------	----------------

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - ANALYSIS LAB DATA SHEET LOSB

SHEET	_OF
-------	-----

STATE CODE		\mathcal{Q}	$\underline{\circ}$
SECTION ID	02	1	5
CONSTRUCTION NUMBER		0	T
		==	

							
1	2	3	4	5	6	7	8
LAYER NUMBER	PROJECT LAYER CODE	LAYER DESCRIPT.	LAYER TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	COMMENT CODE	COMMENT NOTE (50 characters or less) (Use an extra sheet if necessary)
1	A	07	<u> 5</u>	(UNK)ft)*	217	_1_1P	adjacent 080214 - derived material code
Q0 0 	<u> </u>	5 3 	<u>B</u> CI		814 	- · - · -	adjacent 080214 - derived material code
				:_			

* See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet at the nearest adjacent probe: enter depth to refusal in feet if found within 20 feet and cross out "UNK". General Remarks ____

CHECKED AND APPROVED. DATE	
CHECKED AND APPROVED, DATE N. Slmouson 9-19-9	74
SHRP REPRESENTATIVE	
Affiliation NCE	

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - MEASUREMENT DATA LAB DATA SHEET LOSA

SHEET 6 OF 14

THICKNESS CODE TYPE THICKNESS CODE TYPE THICKNESS CODE TYPE		7	· · · · · · · · · · · · · · · · · · ·	<u> </u>									
LAYER NUMBER CODE CODE LAYER TYPE LAYER THICKNESS (INCHES) CODE TYPE CODE TY	1	2	3	4	5	6	7	8	9	10	11	12	13
NUMBER CODE DESCRIPT. TYPE LAYER THICKNESS (INCHES) MATERIAL CODE MEAS. THICKNESS (INCHES) LAYER THICKNESS (INCHES) MATERIAL CODE MEAS. TYPE LAYER THICKNESS (INCHES) MATERIAL CODE MEAS. TYPE 1 A 07 SS UNK/ft* UNK/ft* UNK/ft* UNK/ft*	TAVER		1	TAVED	BEFORE SECTION			WITH	IN SECTION		AFT	ER SECTION	٧
02 H 05 TB 6.0 334 2 6.3 334 5 6.0 334 2	11		1	1	THICKNESS			THICKNESS	t.		THICKNESS		MEAS. TYPE
	1	Æ	07	<u> </u>	UNK/ft*		65) -	UNKft*		4	UNK/ft*	Z17	
	02 03	生工	0 0 3	TB EC	- 6 . 0 - 10 . 5	334 _04	Z	<u>\bar{\bar{\bar{\bar{\bar{\bar{\bar{</u>	334 _ D4	5	- 11 · 3	334 -04	<u>z</u>
		-											
		_											
					· -								
		-			· -								
		-											
		-						· -					
		_											
		_	,					;-					
											· -		
		-											
		_											
<u> </u>		-									 · -		
		_											

* See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet; enter depth to refusal in feet if found within 20 feet and cross out "UNK".

GENERAL REMARKS:

CHECKED AND APPROVED, DATE
CHECKED AND APPROVED, DATE N. HUNGUNSON 9-19-94
LTPP REPRESENTATIVE
Affiliation NCE

SPS Form LO5A, January 1994

? LABOI SUMMAK	COF PAVE	TERIAL HAND MENT LAYERS TA SHEET LA	: - analysi	esting S			SHEETOF_
TE CODI TION II		2 Z	0 B 0 L				
1.	2	3	4	5	6	7	8
LAYER NUMBER	PROJECT LAYER CODE	LAYER DESCRIPT.	Layer Type	LAYER THICKNESS (INCHES)	HATERIAL CODE	COMMENT CODE	COMMENT NOTE (50 characters or less) (Use an extra sheet if necessary)
1	<u> </u>	07		((j))	<u>217</u>	_ _ _	
		05	五島		334	_ _ _	
0 <u>Z</u> 2 <u>3</u> — —	#	05 03	£ <u>\$</u>		-24		
••••••••••••••••••••••••••••••••••••••				·			
	2000000	2000000 (10000000 (100000000000000000000					
					.		
						= = =	
				==::		- - -	
						- - -	was found within 20 feet at the nearest adja-

probe: enter depth to refusal in feet if found within 2 General Remarks

CHECKED AND APPROVED, DATE

N. M. M. M. M. M. 9-19-94.

SHRP REPRESENTATIVE

Affiliation NCE

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - MEASUREMENT DATA LAB DATA SHEET LOSA

SHEET 7 OF 14

STATE CODE

SECTION ID

CONSTRUCTION NUMBER

O 2 1 8

,			12 1		i					 		
	2	3	4	5	6	7	8	9	10	11	12	13
LAYER	PROJECT LAYER	LAYER	LAYER	BEFO	RE SECTION		WITH	IN SECTION		AFT.	ER SECTION	γ
NUMBER	CODE	DESCRIPT.	TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE
1	A	07	22	UNK/ft*		8	UNK/ft*		<u></u>	UNK/ft*		- 1
013	生	05 03	TB PC	G · L Ž · 9	334 _ Q4	<u>2</u>	<u>4</u> .4	334 _04	- 5 - 5	<u>G</u> ·1 7:5	334 _QA	Z
	-											
	-											
	-			 · -			' -			· _		
	-			:-						 · -		
	_			: -								
	_											
										:-		
	-											
	-									·-		
		. 7		<u> </u>	~~~							

See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet; enter depth to refusal in feet if found within 20 feet and cross out "UNK".

GENERAL REMARKS: Boring log lost.

CHECKED AND APPROVED, DATE

N. SCHOOLSON 9-19-94

LTPP REPRESENTATIVE

Affiliation NCE

SPS Form LO5A, January 1994

****************	SPS	LABORATORY	TESTING	DATA	SHEET	**************************************
------------------	-----	------------	---------	------	-------	--

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - ANALYSIS LAB DATA SHEET LOSB

SHEET OF

STATE CODE SECTION ID

CONSTRUCTION NUMBER

			<u> </u>					
1	2	3	4	5	6	7		8
LAYER NUMBER	PROJECT LAYER CODE	LAYER DESCRIPT.	LAYER TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	COMMENT CODE		COMMENT NOTE (50 characters or less) (Use an extra sheet if necessary)
1	<u>A</u>	07	<u>s s</u>	(UNK)ft)*	217	_ 1 🔾 1	P	adjacent 080219 - derived material code
QQ	#	00	T B C		34-			q thickness
							-	

* See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet at the nearest adjacent probe: enter depth to refusal in feet if found within 20 feet and cross out "UNK". General Remarks

CHECKED AND APPROVE	D, DATE
CHECKED AND APPROVE	9-19-94
SHRP REPRESENTATIVE	7
Affiliation NCE	

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - MEASUREMENT DATA LAB DATA SHEET LOSA

8 of 14

STATE CODE SECTION ID

CONSTRUCTION NUMBER

	 		14 1		700-1						· · · · · · · · · · · · · · · · · · ·		
1	2	3	4	5	6	7	8	9	10	11	12	13	
LAYER	PROJECT		TAVED	BEFO	RE SECTION		WITH	IN SECTION		AFT.	AFTER SECTION		
NUMBER	LAYER CODE	LAYER DESCRIPT.	LAYER TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	
1	E	07	<u> క</u>	UNK/ft*		8	UNK/ft*	L14	4	UNK/ft*		<u>8</u>	
02 03	土	05 Q3	TB	:_		8 8	6.7 8.6	334 _04	5151	5.8 8.4	334 _04	Z	
	_			·-									
	-			· -									
	_												
	 .						' -						
	-						:-						
	_									:-			
	_									: -			
	_												
	_												
	_												

See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet; enter depth to refusal in feet if found within 20 feet and cross out "UNK".

GENERAL REMARKS: No measurements before section due to slab removal & replacement to put in culvert.

CHECKED AND APPROVED, DATE N. Linderson LTPP REPRESENTATIVE Affiliation NCE

LTPP LABOR	RATORY MA	********* ATERIAL HAN EMENT LAYER ATA SHEET L	DLING AND 'S - ANALYS.	TESTING	BORATORY 3	TESTING DAT	A SHEET ***********************************
STATE CODE SECTION II CONSTRUCT)	<u>02</u>	0 <u>8</u> 0 <u>1</u>				
1	2	3	4	5	6	7	8
LAYER NUMBER	PROJECT LAYER CODE	LAYER DESCRIPT.	LAYER TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	COMMENT CODE	COMMENT NOTE (50 characters or less) (Use an extra sheet if necessary)
1	E	07	<u>د ک</u>	(INK/ft)*	114	_ _ _	
O Z O 3 O 3 O 5 O 5 O 5 O 5 O 5 O 5 O 5 O 5	井 王 一 一 一	9.5 9.3 	T B P C	8 · U	334	- - 4 - - 4 - - - - - - - -	was found within 20 feet at the nearest adjacent
probe: ent General Re	er deptn	to refusa	l in feet i	if found within 2	0 feet and	l cross out	"UNK".

CHECKED AND APPROVED, DATE

N. HIMOLADY 9-19-94SHRP REPRESENTATIVE
Affiliation NCE

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - MEASUREMENT DATA LAB DATA SHEET LOSA

SHEET 9 OF 14

STATE CODE

SECTION ID CONSTRUCTION NUMBER

			<u> </u>	<u> </u>									
1	2	3	4	5	6	7	8	9	10	11	12	13	
LAYER	PROJECT LAYER	LAYER	LAYER	BEFORE SECTION			WITH	IN SECTION		AFT.	AFTER SECTION		
NUMBER	CODE	DESCRIPT.	TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	
1	Ē	07	<u>5</u> §	UNK/ft*		8	UNK/ft*		న్	UNK/ft*		8	
02 03	生	0.5 0.3	TB	<u>6.5</u> -10.9	334 _04		U . 3 _ I I . 3	334 _04	5 5	- 1 7 · 0 7 · 5	334 _04	<u>-</u>	
	-												
	_						· _						
	_												
	-												
	_												
	-												
	-												
	-						:-						
	-												
	-									• -			
	_												
	-												
	-						· -						

See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet; enter depth to refusal in feet if found within 20 feet and cross out "UNK".

GENERAL	REMARKS	:
---------	---------	---

CHECKED AND APPROVED, DATE N. DENGLISON 9-19-9 9-19-94 LTPP REPRESENTATIVE Affiliation NCE

***************	SPS	LABORATORY	TESTING	DATA	SHEET	*******************************

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - ANALYSIS LAB DATA SHEET LOSB

SHEET OF

STATE CODE SECTION ID

CONSTRUCTION NUMBER

			** **				
1	2	3	4	5	6	7	. 8
LAYER NUMBER	PROJECT LAYER CODE	LAYER DESCRIPT.	LAYER TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	COMMENT CODE	COMMENT NOTE (50 characters or less) (Use an extra sheet if necessary)
1	<u>E</u>	07	<u> 2</u>	(UNK)ft)*	114	_1Q1 <u>P</u>	adjacent 080217-derived material code &
Q Z 0 3 	出 — — —	5 m 	TB G		31 Q		+nicknus
						_ _ _	
				:_			

* See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet at the nearest adjacent probe: enter depth to refusal in feet if found within 20 feet and cross out "UNK". General Remarks

CHEÇ	KED	AND	APPR	OVED	, DATE	;
NA	en	der	SOX	٬ ر	, date 9-19-9	4
SHRP						_
Affi]	liat	ion	NCE			

SHEET 10 OF 14

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - MEASUREMENT DATA LAB DATA SHEET LOSA

STATE CODE O SECTION ID O Z Z 4
CONSTRUCTION NUMBER

			<u> </u>									
1	2	3	4	5	6	7	8	9	10	11	12	13
	PROJECT			BEFOI	RE SECTION		WITH	IN SECTION		AFTER SECTION		
LAYER NUMBER	LAYER CODE	LAYER DESCRIPT.	LAYER TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE
1	卫	07	<u> క</u> ె	UNK/ft*		<u>.</u> .	UNKft*			UNK/ft*		8
010101	EUT	01010	GIB TEC	:- -:::3	 -0 1	00 00 N	3 ·1 4·4	321 _04	- 5 - 5 - 5	: -12:5	 	1 1 1 N
∥	_			· -								
	-	_ _										
	-									· -		
										· -		
	_											
	-											
	-											
	_						· -					
	_											
	_											
	_			·-			· -					
	_						· -					

* See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet; enter depth to refusal in feet if found within 20 feet and cross out "UNK".

GENERAL REMARKS:

CHECKED AND APPROVED, DATE

N. SIMOLIABLE 9-19-94

LTPP REPRESENTATIVE

Affiliation NCE

****************	SPS	LABORATORY	TESTING	DATA	SHEET	**********	******
------------------	-----	------------	---------	------	-------	------------	--------

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - ANALYSIS LAB DATA SHEET LOSB

SHEET	OF

STATE CODE SECTION ID

CONSTRUCTION NUMBER

1 J 07 SS (UNK)ft)* 216	COMMENT NOTE characters or less) extra sheet if necessary)
Q 2 日	

See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet at the nearest adjacent probe: enter depth to refusal in feet if found within 20 feet and cross out "UNK". General Remarks

CHECKED AND APPROVED, DATE	
CHECKED AND APPROVED, DATE N. HENDLILLON 9-19-9	4
SHRP REPRESENTATIVE	
Affiliation NCE	

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - MEASUREMENT DATA LAB DATA SHEET LOSA

SHEET 11 OF 14

STATE CODE

 $\wedge a$

OODD	_ ()
SECTION ID	ozzī
CONSTRUCTION NUMBER	

		7			,							
1	2	3	4	5	6	7	8	9	10	11	12	13
LAYER	PROJECT LAYER	LAYER	LAYER	BEFO	RE SECTION		WITH	IN SECTION		AFTER SECTION		
NUMBER	CODE	DESCRIPT.	TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE
1	E	07	<u> </u>	UNK/ft*		8	<u>(UNB</u> /ft*		4	UNK/ft*	114	
2010 1010 1010 1010	HWH	01 Q1 Q1 Q1 Q1 Q1	GIT PL	:- 	 -04		438 38 8	32I 204	5 5 5)	:- :- :-	308 	<u>-</u> - <u>-</u>
	-											
	_						' -					
	_											
	_											
	_											
							: -					
	_											
	_	[
	-											
	-									·-		
500	the chai	ıldam avçay	السيسا	logs (Power C								

See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet; enter depth to refusal in feet if found within 20 feet and cross out "UNK".

GENERAL REMARKS:

CHECKED AND APPROVED, DATE N. Henderson 9-19-94 LTPP REPRESENTATIVE Affiliation NCE

**************************************	SPS	LABORATORY	TESTING	DATA	SHEET	**************************************
TMDD TABONAMORY MARRY TAY TAYING AND MICHING						

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - ANALYSIS LAB DATA SHEET LOSB

SHEET OF

STATE CODE SECTION ID

CONSTRUCTION NUMBER

1	2	3	4	5	6	7	8
LAYER NUMBER	PROJECT LAYER CODE	LAYER DESCRIPT.	LAYER TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	COMMENT CODE	COMMENT NOTE (50 characters or less) (Use an extra sheet if necessary)
1	E	07	<u> </u>	(UNK)ft)*	114	_ _ _	
이 있 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	FIGH	의 이 이 이	SIB] J		31 MI OI		
	_					_ _ _	

* See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet at the nearest adjacent probe: enter depth to refusal in feet if found within 20 feet and cross out "UNK". General Remarks

CHECKED AL	ND APPROVI	ED, DATE
N. Heni	derson	ed, date <u>9-19-94</u>
SHRP REPRI	ESENTATIV	E
Affiliatio	on NCE	- ·

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - MEASUREMENT DATA LAB DATA SHEET LOSA

SHEET 12 OF 14

STATE CODE SECTION ID CONSTRUCTION NUMBER

		Y										
1	2	3	4	5	6	7	8	9	10	11	12	13
LAYER	PROJECT LAYER	TAYED	7.47777		RE SECTION		WITH	IN SECTION		AFTER SECTION		
NUMBER	CODE	LAYER DESCRIPT.	LAYER TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE
1	Ð	07	<u> క</u> ెక్	UNK/ft*		80	UNK/ft*		8	UNK/ft*		8
000 4	FIGH	0 0 0 0 0 10 10 10 10 10	GITIPL CI	: 8:5	 - <u>04</u>	01001		321 _04	515151	- : - : - :	 	
											I	
	_			· -						 · -		
	-			• -								
	_			· -						- · -		
	-											
	-											
	_											
				• -			` _					
	_			• -								
	_											
	_											
										_		·-

See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet; enter depth to refusal in feet if found within 20 feet and cross out "UNK". GENERAL REMARKS:

CHECKED AND A	PPROV	/ED,	DATE
M. Himden	on	9-1	9-94
LTPP REPRESEN	TATI	Æ	
Affiliation	NC		

**************	SPS	LABORATORY	TESTING	DATA	SHEET	************
----------------	-----	------------	---------	------	-------	--------------

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - ANALYSIS LAB DATA SHEET LOSB

s	HEE	T	OF	
		_		

STATE CODE

SECTION ID CONSTRUCTION NUMBER

1 2	3	4	5	6	7	8
LAYER PROJECT NUMBER LAYER CODE	LAYER DESCRIPT.	LAYER TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	COMMENT CODE	COMMENT NOTE (50 characters or less) (Use an extra sheet if necessary)
1 0	07	<u> </u>	(UNK)ft)*	114	_191P_	adjacent 080221 - derived material & thickness
234 004 	000 0	SB HLC 		MM		adjacent 080221 - derived material code

* See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet at the nearest adjacent probe: enter depth to refusal in feet if found within 20 feet and cross out "UNK". General Remarks

CHEC	KED lx	AND	APPRO	OVED,	DATE 9-19-9-	4
						- '
Affi	lia	tion	NCE	-		

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - MEASUREMENT DATA LAB DATA SHEET LOSA

SHEET /3 OF 14

STATE CODE SECTION ID

CONSTRUCTION NUMBER

	I The second	r			7																		
1	2	3	4	5	6	7	8	9	10	11	12	13											
LAYER	PROJECT LAYER						7 AVED	LAYER		TAVED	TAVED	TAVED	T AVED	LAYER	BEFO	RE SECTION		WITR	IN SECTION		AFT.	ER SECTION	Y
NUMBER		DESCRIPT.	TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE											
1	Ð	07	<u> </u>	UNK/ft*		ا ا	UNKft*		4	UNK/ft*	210												
0100 0100	HIP14	101010 101010	GS TB EC	:- -ī:: 8	 -0 1	0 1 1 1 1 1 1 1 1 1	4.7 4.2 -11.7	321 _04	51515	:- :-	 - <u>0</u> 4	801901 Ni											
	-																						
	-																						
	~									· -													
										·-													
							' -																
	-																						
	_						<u>;</u>																
	_						:-																
										;-													
	_																						
	_						: -			[

See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet; enter depth to refusal in feet if found within 20 feet and cross out "UNK".

GENERAL REMARKS:

CHEC	KED	AND	APPRO	OVED,	DATE	
V.Ф	er	WU	DO-K	, 9·	DATE 19-94	1
TPP	REI	RESE	ENTAT	[VE_		•
ffi	liat	ion	NO	E		

**************************************	LABORATORY	TESTING	DATA SHEET	` ************************************
--	------------	---------	------------	--

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - ANALYSIS LAB DATA SHEET LOSB

SHEET	OF
_	

STATE CODE SECTION ID

CONSTRUCTION NUMBER

				(
1	2	3	4	5	6	7	8
LAYER NUMBER	PROJECT LAYER CODE	LAYER DESCRIPT.	LAYER TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	COMMENT CODE	COMMENT NOTE (50 characters or less) (Use an extra sheet if necessary)
1	Al	07	<u> </u>	(UNK)ft)*	<u> 210</u>	_ _ _	
N34	MGH	951m	S B C C C C C C C C C C C C C C C C C C		MM:	-	adjacent 080221- derived material code
			- -	·		_ _ _	

* See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet at the nearest adjacent probe: enter depth to refusal in feet if found within 20 feet and cross out "UNK". General Remarks ____

AUTOURD WID MILKOARD, DAIR
CHECKED AND APPROVED, DATE N. Dunoulson 9-19-94
SHRP REPRESENTATIVE
Affiliation NCE

******	***********	SPS	LABORATOKY	TESTING	DATA	SHEET	***************
--------	-------------	-----	------------	---------	------	-------	-----------------

LTPP LABORATORY MATERIAL HANDLING AND TESTING SUMMARY OF PAVEMENT LAYERS - MEASUREMENT DATA LAB DATA SHEET LO5A

SHEET	OF	7
_		

STATE CODE SECTION ID

CONSTRUCTION NUMBER

2	<u>5</u>	7
	<u>0</u>	1

1	2	3	4	5	6	7	8	9	10	1,,	10	1.2
LAYER	PROJECT LAYER	LAYER	TAVED		BEFORE SECTION					AFTER SECTION		
NUMBER	CODE	DESCRIPT.	LAYER TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	MEAS. TYPE
1	B	07	22	UNK/ft*		8	UNK/_ft*		4	UNK/ft*	214	
02	エ	03	و د	_12.0	_04	Z	_11.7	_04	5	_1L. 1	_ 04	Z
							: -					
	_											
							:-					
	-											
	_									:-		
	_							[
	-											
	_											
											- 	

See the shoulder auger probe logs (Form SO5); circle "UNK" if no refusal was found within 20 feet; enter depth to refusal in feet if found within 20 feet and cross out "UNK".

	GENERAL	REMARKS	:
--	---------	---------	---

CHECKED AND APPROVED,	DATE
checked and approved, V. Sindlysov 9-	19-94
LTPP REPRESENTATIVE	
Affiliation NCE	

LTPP LABOR	**************************************							
STATE CODE SECTION IN CONSTRUCT	D	<u> </u>	08 59 01					
1	2	3	4	5	6	7	8	
LAYER NUMBER	PROJECT LAYER CODE	LAYER DESCRIPT.	LAYER TYPE	LAYER THICKNESS (INCHES)	MATERIAL CODE	COMMENT CODE	COMMENT NOTE (50 characters or less) (Use an extra sheet if necessary)	
1	<u>B</u>	07	<u> </u>	(UNK)ft)*	214	_ _ _		
D Z	<u> </u>	03	<u></u> <u> </u>					
* See the probe: ent General Re CHECKED AN SHRP REPRE Affiliation	ter depth emarks	ED, DATE	l in feet i	orm SO5); circle if found within 2	"UNK" if r O feet and	no refusal I cross out	was found within 20 feet at the nearest adjacent "UNK".	

COMMERCIAL TESTING LABORATORIES

A DIVISION OF CTL/THOMPSON, INC.

March 8, 1993 (Corrected March 29, 1993)

Castle Rock Construction P.O. Box 1148 Castle Rock, CO 80104-1148

Attention:

Ralph Bell

Subject:

Trial Mix Study
CDOT Class P Mix

Job No. 7774

Dear Sir:

This report presents results of a trial mix study to determine compressive strengths for two CDOT Class P mixes.

Aggregates

Frei No. 467 and No. 57 coarse aggregate and Frei sand were used in this study. Tests were conducted to determine compliance with gradation requirements and to define properties needed for trial mix preparation. The physical properties of the aggregates are presented in Table No. 1. The aggregates submitted meet CDOT specifications for the properties tested.

Concrete Mix Criteria

One concrete mix was proportioned with size No. 467 aggregate in general conformance with ACl 211, and your instructions, to meet CDOT requirements. A similar mix was prepared with only size No. 57 coarse aggregate. The mixes were prepared and specimens cast in accordance with AASHTO T 126. The following criteria and materials were used in the mixes.

Cement Content (lbs):

565

Fly Ash (lbs.)

113

Slump (inches):

1-1/2 - 2-1/2 in.

Air Content, (%):

5 to 7

Materials:

Cement:

Southwestern Type I/II

Fly Ash:

Pozzolanic Class F (Bridger)

Coarse Aggregate:

Frei Pit 1

Sand:

Frei Pit 7

Admixture:

Conchem 50 and Pave-Air (Master Builders)

Trial Mix Proportions and Physical Properties

Mix proportions and fresh concrete properties are presented in Table Nos. 2 and 3. The compressive strengths are also presented. The mix presented in Table No. 2 meets CDOT requirements for a Class P mix, and the mix presented in Table 3 meets CDOT requirements for a Class P mix with a size No. 57 aggregate substituted for size No. 467.

If you have any questions regarding this report, or if we can be of further service, please feel free to contact us.

Very truly yours,

COMMERCIAL TESTING LABORATORIES

Orville R. Werner II, P.E., Senior Engineer

ORW/nd

Enclosures

PHYSICAL PROPERTIES OF AGGREGATES

Client:

Castle Rock Construction

Job No.:

7774

Aggregates: Coarse - Frei (Pit No. 1)

Fine - Frei (Pit No. 7)

AASHTO T 27, Sieve Analysis of Fine and Coarse Aggregate

Sieve <u>Size</u>	Size #57 Sample <u>% Pass</u>	Size #4 Sample <u>% Pass</u>	55/45 Blend #57/#4 % Pass	CDO Spec <u>% Pa</u> #57		Sand Sample % Pass	CDOT 703 Specs. % Pass
2 in.		100	100		100		
1-1/2 in.	100	9 6	98	100	95-100		
1 in.	99	57	80	95-100	-		
3/4 in.	87	18	56	-	35-70		
1/2 in.	55	1	31	25-60	-		
3/8 in.	39	1	22	-	10-30		100
No. 4	8	0.5	5	0-10	0-5	100	95-100
No. 8	4	-	3	0-5	-	97	•
No. 16						78	45-80
No. 30						44	-
No. 50						17	10-30
No. 100						3	2-10
AASHTO T 11 Material Fine Than No. 200	r D						
Sieve, (%):	0.5	0.3	0.4	1.0) Max	0.6	3.0 Max.

AASHTO T 96, Resistance to Abrasion of Small Size Coarse Aggregate by Use of the Los Angeles Machine

Sample <u>I.D.</u>	Grading	% Loss
Coarse Aggregate	#57 (B) #4 (3)	37.1 39.9

AASHTO T 176, Sand Equivalent Test Modified for CDOT

Sand Avg. S.E. = 98.3

Client:

Castle Rock Construction

Aggregates:

Coarse Aggregate - Frei No. 467 Blend (Pit No. 1)

Fine Aggregate - Frei (Pit No. 7)

Cement:

Southwest Type I/II

Fly Ash:

Pozzolanic Class F (Bridger)

Admixtures:

Master Builders

CONCRETE MIX PROPORTIONS

Identification No.: A-1308

Date Made: February 3, 1993

MIX PROPORTIONS

(Per 1.01 Cubic Yard of Concrete)

Cement	565	lbs
Fly Ash	113	lbs
WRA (Conchem 50 @ 2.5 ozs/cwt)	17.0	ozs
AEA (Pave-Air)	5.6	ozs
Sand	1210	lbs
Coarse Aggregate (No. 57)	970	ibs
Coarse Aggregate (No. 4)	800	lbs
Water	243	lbs (29.2 gals

In the above proportions, aggregate weights are for aggregate in the saturated, surface dry condition. Corrections must be made for aggregates that vary from these moisture conditions.

PHYSICAL PROPERTIES OF CONCRETE

Unit Wt. of Mixed

Concrete, (AASHTO T 121) pcf: 144.8 Slump, (AASHTO T 119) in.: 1-1/2

Air Content, (AASHTO T 152,

22 LIPAN STREET

(Pressure Method), %: 5.1 Water/Cementitious Ratio, (lb/lb): 0.36 Temperature, (ASTM C 1064), ^oF: 67

COMPRESSIVE STRENGTH OF TEST CYLINDERS (AASHTO T 22), psi

	24 Hr.	3-Day	7-Day	28-Day
				5840
	2400	4040	5070	5930
	<u>1950</u>	<u>4110</u>	<u>5100</u>	5840
Avg:	2175	4075	5085	5870

COMMERCIAL TESTING LABORA

Orville R. Werner II, P.E.

DENVER, COLORADO 802

303 / 825-3207

Client:

Castle Rock Construction

Aggregates:

Coarse Aggregate - Frei No. 57 Blend (Pit No. 1)

Fine Aggregate - Frei (Pit No. 7)

Cement:

Southwest Type I/II

Fly Ash:

Pozzolanic Class F (Bridger)

Admixtures:

Master Builders

CONCRETE MIX PROPORTIONS

Identification No.: A-1307

Date Made: February 3, 1993

MIX PROPORTIONS

(Per 1.01 Cubic Yard of Concrete)

Cement	565	lbs
Fly Ash	113	lbs
WRA (Conchem 50 @ 2.5 ozs/cwt)	17.0	ozs
AEA (Pave-Air)	5.6	ozs
Sand	1200	lbs
Coarse Aggregate (No. 57)	1730	lbs

Water

247 lbs (29.7 gals)

In the above proportions, aggregate weights are for aggregate in the saturated, surface dry condition. Corrections must be made for aggregates that vary from these moisture conditions.

PHYSICAL PROPERTIES OF CONCRETE

22 LIPAN STREET

Unit Wt. of Mixed

142.2
1-1/2
6.2

Water/Cementitious Ratio, (lb/lb): 0.36 Temperature, (ASTM C 1064), ^oF: 65

COMPRESSIVE STRENGTH OF TEST CYLINDERS (AASHTO T 22), psi

	24 Hr.	3-Day	7-Day	28-Day
		•		6300
	1770	3700	5030	6180
	<u>1930</u>	3840	5040	<u>6470</u>
Avg:	1850	3770	5035	6315

Orville R. Werner II, P.E.

DENVER, COLORADO 80223

COMMERCIAL TESTING LABORAT

03 / 825-3207

COMMERCIAL TESTING LABORATORIES

A DIVISION OF CTL/THOMPSON, INC.

June 16, 1993

Castle Rock Construction P.O. Box 1148 Castle Rock, CO 80104-1148

Attention:

Mr. Ralph Bell

Subject:

Concrete Trial Mix Study

SHRP Mix, 550 psi Flexural Strength

Colorado Project 076-1 (138)

Job No. 7738

Dear Mr. Bell:

After many trial mixes to establish proportions for a 550 psi flexural strength mix we have made three mixes at the same proportions, and have achieved results which we believe meet the specified requirements. The results of these mixes are presented in Table No. 1 attached. Table No. 2 summarizes the results and compares them to specified requirements, and Table No. 3 presents the properties of concrete aggregates.

We found that, in general, slump and air contents must be closely regulated to achieve 550 psi flexural strength. This mix with less than 6% air content may achieve strength appreciably in excess of 550 psi. Moreover, to achieve durability in this relatively lean mix, air content should be in the upper part of the specified range. Therefore, we recommend that the air contents on site be controlled as nearly as possible between 6% and 7%.

If you have any questions regarding this mix, or our results, please call.

Very truly yours,

COMMERCIAL TESTING LABORATORIES

Orville R. Werner II, P.E. Principal Engineer

ORW/nd Enclosures

SHARP TRIAL MIXES 550 PSI FLEXURAL STRENGTH

Mix I.D.	<u>A-3136</u>	<u>A-3137</u>	<u>A-3138</u>
Date Made:	5-27-93	5-27-93	5-27-93
Cement Content (lbs/yd ³)	398	398	402
Fly Ash Content (lbs/yd ³)	100	99	100
AEA Content (ozs/yd ³)	7.1	6.3	5.6
WRA Content (ozs/yd ³)	o	0	0
Sand Content (lbs/yd ³)	1431	1413	1445
Rock Content (lbs/yd ³)	1722	1709	1730
Water Content (lbs/yd ³)	234	239	236
W/C+P Ratio	0.47	0.48	0.47
Air Content (%)	6.5	7.0	5.8
Slump (in)	2.0	1-3/4	1-1/4
Density (lbs/ft ³)	143.0	142.4	144.4
Flexural Strength:			
7-days	490 <u>520</u>	550 <u>510</u>	530 <u>525</u>
Averag	e: 505	530	525
14-days	540 570 <u>560</u>	520 570 <u>570</u>	590 550 <u>620</u>
Averag	e: 560	570	585

SHRP "550" MIX SUMMARY

Average Proportions/Properties

Cement Fly Ash AEA Sand Rock Water	399 100 6.3 1430 1720 236	lbs/yd ³ lbs/yd ³ ozs/yd ³ lbs/yd ³ lbs/yd ³ lbs/yd ³	
Slump Air Content WC+P Ratio Density Flexural Strength:	1-3/4 6.4% 0.47 143.3	inches pcf	λ ⁽²⁾ , λ ³
7 Days 14 Days	520 572	psi psi	·

- Southwestern Type I/II Low Alkali Portland Cement

Fly Ash - Pozzolanic Bridger Class F

AEA - Conchem Pave-Air Sand

- Frei, Pit No. 7 (Platte River) - Frei, #57, Pit 6 (Clear Creek Quarry) Rock

Required average 14-day flexural strength - 525 to 575 psi Allowable variation of average strength - 165 psi max. Cumulative variation of average strength - 25 psi actual

PHYSICAL PROPERTIES OF AGGREGATES

Client:

Castle Rock Construction

Job No.:

7738

Aggregates: Coarse - Frei, Pit 6

Fine - Frei, Pit 7

AASHTO T 27, Site Analysis of Fine and Coarse Aggregate

Sieve Size	Size #57 Sample % Pass	CDOT 703 Specs % Pass #57	Sand Sample % Pass	CDOT 703 Specs. % Pass
2"				
1-1/2"	199	100		
1"	99	95-100		
3/4"	87	•		
1/2"	55	25-60		
3/8"	39	•		100
No. 4	8	0-10	100	95-100
No. 8	4	0-5	97	•
No. 16			78	45-80
No. 30			44	-
No. 50			17	10-30
No. 100			3	2-10
AASHTO T 11, Material Finer than No. 200,				
Sieve, (%):	0.5	1.0 Max.	0.6	3.0 Max.

AASHTO T 96, Resistance to Abrasion of Small Size Coarse Aggregate by Use of the Los Angeles Machine.

Sample I.D.	Grading	% Loss
Coarse Aggregate	#57 (B)	32.0

AASHTO T 176, Sand Equivalent Test Modified for CDOT

Sand Avg. S.E. = 98.3

AASHTO T 84/T85, Specific Gravity and Absorption

Sample I.D.	Specific Gr.	Absorption, (%)
Sand	2.60	1.0
Coarse Aggregate	2.73	1.1

Summary of Trial Mixes SHRP "550" Mix

Mix I.D.	<u>Date</u>	Cement (lbs)	Fly Ash (lbs)	Rock (lbs)	Air _(%)	Slump <u>(in)</u>	W/C	14-Day Flex.
1746	3-17	371	93	1700	6.4	1-3/4	0.50	500
1747	3-17	297	79	1700	6.2	1	0.60	420
1748	3-17	481	120	1720	6.0	1-3/4	0.42	565
1880	3-25	401	100	1720	6.0	1-1/2	0.46	590
1932	3-31	467	117	1730	5.5	1-3/4	0.40	635
1944	4-1	467	117	1730	5.9	1-1/2	0.40	635
1962	4-2	464_	116	1720	6.8	1-1/2	0.41	610
z28/	5-7	422	106	1720	6.1	2	0.45	525
2232	5-7	427	107	1740	5.3	/一	0.45	626
2283	5-7	422	108	1720	6.2	13/4	0.45	620
3136	5-27	398	100	1720	6.5	2	0.47	560
3137	5-27	398	99	1710	7.0	13/4	•	570
3138	5-27	402	100	1730	•	149	0.48	
0170	3-4/	406	700	1 730	5.8	14	0.47	585

Job No. 7738 Date: April 27, 1993

COMMERCIAL TESTING LABORATORIES

A DIVISION OF CTL/THOMPSON, INC.

June 14, 1993

Castle Rock Construction P.O. Box 1148 Castle Rock, CO 80104-1148

Attention:

Mr. Ralph Bell

Subject:

Concrete Trial Mix Study

SHRP Mix, 900 psi Flexural Strength

Colorado Project 076-1 (138)

Job No. 7738

Dear Mr. Bell:

After many trial mixes to establish proportions for a 900 psi flexural strength mix we have made three mixes at the same proportions, and have achieved results which we believe meet the specified requirements. The results of these mixes are presented in Table No. 1 attached. Table No. 2 summarizes the results and compares them to specified requirements, and Table No. 3 presents the properties of concrete aggregates.

We found that, in general, slump and air contents must be closely regulated to achieve 900 psi flexural strength. Moreover, it appears that clean aggregate is critical in this mix. We were unable to consistently achieve the required strength with slumps in excess of 1-1/2 inches and air contents in excess of 6 percent. Therefore, you should probably limit these properties in the concrete supplied for 900 psi (flexural strength) concrete.

If you have any questions regarding this mix, or our results, please call.

Very truly yours,

COMMERCIAL TESTING LABORATORIES

Orville R. Werner II, P.E. Principal Engineer

ORW/nd

SHARP TRIAL MIXES 900 PSI FLEXURAL STRENGTH

Mix I.D.		<u>A-2205</u>	<u>A-2655</u>	<u>A-2654</u>
Date Made:		4-6-93	5-7-93	5-7-93
Cement Content (lbs/yd ³)	750	753	744
Fly Ash Content (lbs/yd ³))	150	150	149
AEA Content (ozs//yd ³)		3.5	3	3
WRA Content (ozs/yd ³)		36	37	35
Sand Content (lbs/yd ³)		940	930	930
Rock Content (lbs/yd ³)		1860	1868	1869
Water Content (lbs/yd ³)		251	261	260
W/C+P Ratio		028	0.29	0.29
Air Content (%)		6.2	5.5	5.3
Slump (in)		1-3/4	1-1/2	1-1/2
Density (lbs/ft ³)		145.8	146.3	147.0
Flexural Strength:				
7-days		870 880	825 855	810 820
Ave	erage:	875	840	815
14-days		920 820 880	900 950 <u>910</u>	845 955 <u>920</u>
Ave	erage:	880	910	920

SHRP "900" MIX SUMMARY

Average Proportions/Properties

749 lbs/yd³ Cement 150 lbs/yd3 Fly Ash 3 ozs/yd³ **AEA** 36 ozs/yd³ **WRA** 935 lbs/yd³ Sand 1865 lbs/yd³ Rock 257 lbs/yd³ Water

Slump 1-1/2 inches

Air Content 5.7% WC+P Ratio 0.29 Density 146.4 pcf

Flexural Strength:

7 Days 845 psi 14 Days 905 psi /

Portland Cement - Southwestern Type I/II Low Alkali

Fly Ash - Pozzolanic Bridger Class F

- Conchem Pave-Air AEA

WRA - Conchem 50 (4 ozs per cwt) Sand - Frei, Pit No. 7 (Platte River)

- Frei, #57, Pit 6 (Clear Creek Quarry) Rock

Required average 14-day flexural strength - 860 to 940 psi Available variation of average strength - 250 psi max. Cumulative variation of average strength - 45 psi actual

PHYSICAL PROPERTIES OF AGGREGATES

Client: Castle Rock Construction

Job No.: 7738

Aggregates: Coarse - Frei

Fine - Frei

AASHTO T 27, Site Analysis of Fine and Coarse Aggregate

Sieve <u>Size</u>	Size #57 Sample % Pass	CDOT 73 Specs <u>% Pass</u> #57	Sand Sample % Pass	CDOT 703 Specs. % Pass
2"				
1-1/2"	199	100		
1"	99 .	95-100		
3/4"	87	•		
1/2"	55	25-60		
3/8"	39	•		100
No. 4	8	0-10	100	95-100
No. 8	4	0-5	97	•
No. 16			78	45-80
No. 30			44	- ,
No. 50			17	10-30
No. 100			3	2-10
AASHTO T 11 Material Finer than No. 200,				
Sieve, (%):	0.5	1.0 Max.	0.6	3.0 Max.

AASHTO T 96, Resistance to Abrasion of Small Size Coarse Aggregate by Use of the Los Angeles Machine.

Sample I.D.	Grading	% Loss
Coarse Aggregate	#57 (B)	32.0

AASHTO T 176, Sand Equivalent Test Modified for CDOT

Sand Avg. S.E. = 98.3

AASHTO T 84/T85, Specific Gravity and Absorption

Sample I.D.	Specific Gr.	Absorption, (%)
Sand	2.60	1.0
Coarse Aggregate	2.73	1.1

Summary of Trial Mixes SHRP "900" Mix

Mix I.D.	<u>Date</u>	Cement <u>(lbs)</u>	Fly Ash (lbs)	Rock _(lbs)	Air _(%)	Slump _(in)	_W/C_	14-Day Flex.
<u> Mina ilea</u>	<u>Duis</u>	71:501	Timer.		-1./21-	_111.11		14 Day Flox.
1612	3-9	649	98	1820	6.5	2	0.32	750
1645	3-9	750	99	1780	6.9	2	0.30	790
1646	3-9	555	99	1880	6.4	1-1/2	0.36	680
1656	3-9	750	99	1780	6.8	2	0.30	775
1665	3-10	680	140	1900	4.8	1	0.30	925
1791	3-22	558	112	1930	5.5	1-3/4	0.34	730
1792	3-22	659	132	1930	5.5	2	0.31	835
1793	3-22	764	153	1940	4.8	2	0.29	905
1860	3-26	714	143	1890	5.0	1-1/2	0.29	*1010
1861	3-26	705	141	1910	5.5	1-1/2	0.29	840
1862	3-26	730	101	1880	5.3	1-1/2	0.30	880
1989	4-5	750	150	1860	6.0	1-1/2	0.28	865 🔪
2005	4-6	750	150	1860	6.2	1-3/4	0.28	880 \ AJE. 87
2024	4-7	751	150	1860	5.7	2	0.29	*820 \ / `
2654	5-7	744	149	1870	5.3	1至	0.29	920 / Var. = 14"
2655	5-7	.753	150	1870	5.5	1包	0.29	920 / Vor. = 19°

Job No. 7738 Date: April 27, 1993

COMMERCIAL TESTING LABORATORIES

A DIVISION OF CTL/THOMPSON, INC.

June 14, 1993

Castle Rock Construction P.O. Box 1148 Castle Rock, CO 80104-1148

Attention:

Ralph Bell

Subject:

Trial Mix Study

CDOT Lean Concrete Base Trial Mix Study Job No. 7774 A

Dear Sir:

This report presents results of a trial mix study to determine compressive strengths for a lean concrete base mix meeting the requirements of SHRP/CDOT Project No. ID - I (CX) 076-1 (138).

Aggregates

Frei No. 57 coarse aggregate and Frei sand were used in this study. Tests were conducted to determine compliance with gradation requirements and to define properties needed for trial mix preparation. The physical properties of the aggregates are presented in Table No. 1. The aggregates submitted meet CDOT specifications for the properties tested.

Concrete Mix Criteria

Three concrete mixes with incremental proportions of cement and fly ash were proportioned in general conformance with ACI 211, and your instructions, to meet project requirements. The mixes were prepared and specimens cast in accordance with AASHTO T 126. The following criteria and materials were used in the mixes.

115 to 231 Cement Content (lbs): 35 to 69 Fly Ash (lbs.) Slump (inches): 3 to 4 7 to 9 Air Content, (%):

Materials:

Southwestern Type I/II Cement: Pozzolanic Class F (Bridger) Fly Ash:

Coarse Aggregate: Frei Pit 1 Frei Pit 7 Sand:

Pave-Air (Master Builders) Admixture:

Trial Mix Proportions and Physical Properties

Mix proportions and fresh concrete properties are presented in Table Nos. 2, 3, and 4. The compressive strengths are also presented. A recommended mix meeting 7-day project strength requirements (500 to 750 psi) is presented in Table No. 5. A graphical representation of cement/fly ash content versus strength is presented in Figure No. 1. This graph indicates that a mix with 243 to 295 lbs/yd³ of cement plus fly ash would meet project strength requirements at age 7 days. The recommended mix (Table No. 5) should yield approximately 600 psi at age 7 days.

If you have any questions regarding this report, or if we can be of further service, please feel free to contact us.

Very truly yours,

COMMERCIAL TESTING LABORATORIES

Orville R. Werner II, P.E., Senior Engineer

ORW/nd

Enclosures

PHYSICAL PROPERTIES OF AGGREGATES

Ullent: Castle Rock Construction
Job No.: 7774 A

Aggregates: Coarse - Frei (Pit No. 1)

Fine - Frei (Pit No. 7)

AASHTO T 27, Sieve Analysis of Fine and Coarse Aggregate

Sieve <u>Size</u>	Size #57 Sample <u>% Pass</u>	CDOT 703 Specs. <u>% Pass</u> # 57	Sand Sample <u>% Pass</u>	CDOT 703 Specs. <u>% Pass</u>
2 in. 1-1/2 in. 1 in. 3/4 in. 1/2 in. 3/8 in. No. 4 No. 8 No. 16 No. 30 No. 50 No. 100	100 99 87 55 39 8	100 95-100 - 25-60 - 0-10 0-5	100 97 78 44 17 3	100 95-100 - 45-80 - 10-30 2-10
AASHTO T 11, Material Finer Than No. 200 Sieve, (%):	0.5	1.0 Max.	0.6	3.0 Max.

AASHTO T 96, Resistance to Abrasion of Small Size Coarse Aggregate by Use of the Los Angeles Machine

Sample <u>I.D.</u> Grading % Loss Coarse Aggregate #57 (B) 37.1

AASHTO T 176, Sand Equivalent Test Modified for CDOT

Sand Avg. S.E. = 98.3

Client: Castle Rock Construction

Coarse Aggregate - Frei No. 57, Pit 1 Aggregates:

Fine Aggregate - Frei, Pit 7

Southwest Type I/II Cement:

Fly Ash: Pozzolanic Class F (Bridger)

Master Builders Admixtures:

CONCRETE MIX PROPORTIONS

Identification No.: A-1965/1994 Date Made: April 6, 1993

MIX PROPORTIONS (Per 1.01 Cubic Yard of Concrete)

Cement	112	lbs
Fly Ash	34	lbs
AEA (Pave-Air)	2.5	ozs
Sand	1610	lbs
Coarse Aggregate (No. 57)	1600	lbs

271 lbs (32.5 gals) Water

In the above proportions, aggregate weights are for aggregate in the saturated, surface dry condition. Corrections must be made for aggregates that vary from these moisture conditions.

PHYSICAL PROPERTIES OF CONCRETE

Unit Wt. of Mixed

Concrete, (AASHTO T 121) pcf:	134.5
Slump, (AASHTO T 119) in.:	3-1/4
Air Content, (AASHTO T 152,	
(Pressure Method), %:	9.0
Water/Cementitious Ratio, (lb/lb):	1.86
Temperature, (ASTM C 1064), ^o F:	69

COMPRESSIVE STRENGTH OF TEST CYLINDERS (AASHTO T 22), psi

	3-Day	7-Day
		200
	90	160
	90	<u>190</u>
Average:	90	185

Orville R. Werner II, P

Client: Castle Rock Construction

Aggregates: Coarse Aggregate - Frei No. 57, Pit 1

Fine Aggregate - Frei, Pit 7

Cement: Southwest Type I/II

Fly Ash: Pozzolanic Class F (Bridger)

Admixtures: Master Builders

CONCRETE MIX PROPORTIONS

Identification No.: A-1995 Date Made: April 6, 1993

MIX PROPORTIONS (Per 1.01 Cubic Yard of Concrete)

Cement 170 lbs
Fly Ash 51 lbs
AEA (Pave-Air) 3.5 ozs
Sand 1570 lbs
Coarse Aggregate (No. 57) 1600 lbs

Water 255 lbs (30.6 gals)

In the above proportions, aggregate weights are for aggregate in the saturated, surface dry condition. Corrections must be made for aggregates that vary from these moisture conditions.

PHYSICAL PROPERTIES OF CONCRETE

Unit Wt. of Mixed

Concrete, (AASHTO T 121) pcf: 135.0 Slump, (AASHTO T 119) in.: 3

Air Content, (AASHTO T 152,

(Pressure Method), %: 9.0
Water/Cementitious Ratio, (lb/lb): 1.15
Temperature, (ASTM C 1064), ^OF: 72

COMPRESSIVE STRENGTH OF TEST CYLINDERS (AASHTO T 22), psi

	3-Day	7-Day
		370
	270	410
	280	<u>440</u>
Average:	275	405

COMMERCIAL TESTING LABORATORIES

Orville R. Werner II, P.E.

Client:

Castle Rock Construction

Aggregates:

Coarse Aggregate - Frei No. 57, Pit 1

Fine Aggregate - Frei, Pit 7

Cement:

Southwest Type I/II

Fly Ash:

Pozzolanic Class F (Bridger)

Admixtures:

Master Builders

CONCRETE MIX PROPORTIONS

Identification No.: A-1996/1966

Date Made: April 6, 1993

MIX PROPORTIONS

(Per 1.01 Cubic Yard of Concrete)

Cement	231	lbs
Fly Ash	69	lbs
AĚA (Pave-Air)	3.3	ozs
Sand	1530	lbs
Coarse Aggregate (No. 57)	1600	lbs

Water 256 lbs (30.7 gals)

In the above proportions, aggregate weights are for aggregate in the saturated, surface dry condition. Corrections must be made for aggregates that vary from these moisture conditions.

PHYSICAL PROPERTIES OF CONCRETE

Unit Wt. of Mixed

136.8 Concrete, (AASHTO T 121) pcf: Slump, (AASHTO T 119) in.:

Air Content, (AASHTO T 152,

(Pressure Method), %: 8.9 Water/Cementitious Ratio, (lb/lb): 0.85 Temperature, (ASTM C 1064), ^oF: 73

COMPRESSIVE STRENGTH OF TEST CYLINDERS (AASHTO T 22), psi

7-Day 3-Day 750 560 770 570 800 775 Average: 565

Orville R. Werner II, P

Client:

Castle Rock Construction

Aggregates:

Coarse Aggregate - Frei No. 57, Pit 1

Fine Aggregate - Frei, Pit 7

Cement:

Southwest Type I/II

Fly Ash:

Pozzolanic Class F (Bridger)

Admixtures:

Master Builders

CONCRETE MIX PROPORTIONS (Calculated from Trial Mixes)

Identification No.: A-1995 M

RECOMMENDED MIX PROPORTIONS

(Per 1.01 Cubic Yard of Concrete)

204 lbs Cement 61 lbs Fly Ash As Needed AEA (Pave-Air) 1550 lbs Sand Coarse Aggregate (No. 57) 1600 lbs

Water 255 lbs (30.6 gals)

In the above proportions, aggregate weights are for aggregate in the saturated, surface dry condition. Corrections must be made for aggregates that vary from these moisture conditions.

ESTIMATED PHYSICAL PROPERTIES OF CONCRETE

Unit Wt. of Mixed

Concrete, (AASHTO T 121) pcf: Slump, (AASHTO T 119) in.:

135-138

3-4

Air Content, (AASHTO T 152,

(Pressure Method), %:

7-9

Water/Cementitious Ratio, (lb/lb):

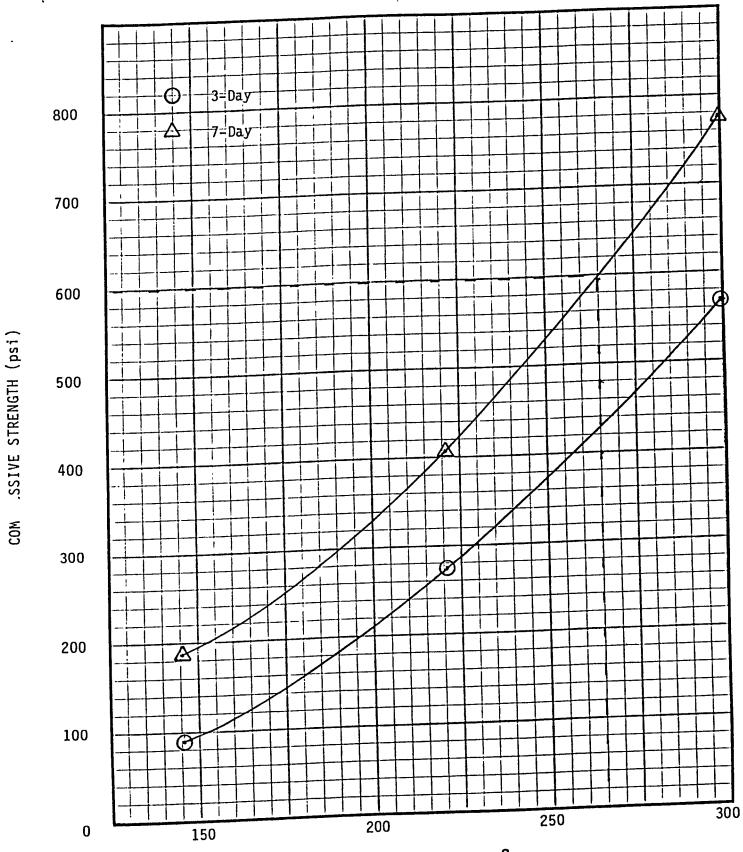
0.96

ANTICIPATED COMPRESSIVE STRENGTH OF TEST CYLINDERS (AASHTO T 22), psi

3-Day

7-Day

400-460


550-750

COMMERCIAL TESTING LABORATORIES

Orville R. Werner II, P.E.

CEMENT AND FLY ASH CONTENT (LBS/YD3)

Lean Concrete Base

Cement- Southwest I/II
Fly Ash - Pozzolanic Bridger
Air Entraining Admixture - MB Pave Air
Air Content - 8.9% to 9.0%: Slump 3 to 3-1/4 inches

DEPARTMENT OF HIGHWAYS STATE OF COLORADO DIVISION OF HIGHWAYS DOH FORM No. 157c

Revised August, 1987

FIELD SHEET NO.: 1081

PROJECT NUMBER: 176-1(138)

LOCATION: S.H. 51 to Bromley Lane

DISTRICT: 6 DATE: 02/23/94

FIELD REPORT FOR SAMPLE IDENTIFICATION OR MATERIALS DOCUMENTATION

3200 P 89015
-----Function Part. Project ID No.

SAMPLE SUBMITTED:

ITEM: 412 CLASS: CONCRETE PAVEMENT GRADING: SPECIAL PROVISIONS APPL:YES[] NO[*]

PREVIOUSLY USED ON PROJECT: DOH 157 NO.: DOH 158 NO.:

DESCRIBE TESTS REQUIRED, USE TO BE MADE OF MATERIAL, AND/OR DOCUMENTATION
DETAILS: This report documents the source of water used for batching
concrete for concrete payment. Castle Rock and Mobile Premix
supplied concrete for paying. Castle Rock obtained water for their
on site batch plant from Brighton's domestic water supply. Water
for Mobile Premix's batch plant was obtained from Denver's domestic
water supply.

SAMPLE TYPE: DATE NEEDED:

CONTRACTOR: Castle SUPPLIER:

SAMPLED FROM: PIT NAME OR OWNER:

QUANTITY PREVIOUS TOTAL QUANTITY

REPRESENTED: 244520. QUANTITY: 0. TO DATE: 244520.

UNITS: Square Yards

SAMPLE SHIPPED TO:

SUBMITTED: YES[] NO[*] CENTRAL LAB[] VIA:

DISTRICT LAB[] DATE SHIPPED:

SAMPLED/

INSPECTED BY: Fred Braun Tech III SUPERVISOR: Brett Locke, P.E.

Project Engineer

CENTRAL LABORATORY RESIDENT ENGINEER Denver

DISTRICT OFFICE

DISTRICT MATERIALS ENGINEER

PROJECT FILE

İ

DIVISION OF HIGHWAYS STATE OF COLORADO DOH Form No. 804 April 1974

Project	ID-I-NH(CX)076-1(138)
Date	July 14, 1993

CONCRETE PLANT INSPECTION

ANT Castle Rock Construc	tion	
AGGREGATE SCALES Inspe	cted by American Scale	Date inspected 7-13-9
CEMENT SCALES	Same as above	
WATER MEASURING DEVICE	Badger Meter	
WATER SOURCECity	y water	
ADMIXTURES: AIR ENTRAINING AGENT:	CONDITION OF MEASURING DE SATISFACTORY - UNSATISFAC XXXXXX	EVICE
POZZOLITH	XXXXXX	
OTHER .	xxxxxx	-
CEMENT FACILITIES: 2	bins 1 for cement and 1 for	: flyash
	Central Batch (12 yds.)	
BATCHING PROCEDURE:		
	EQUIPMENT: None	
REMARKS: This is a	portable plant.	
		
		· · · · · · · · · · · · · · · · · · ·
		- A A
	PLANT INSPECTED BY: Rolat	E. anchew

LCB

EDOCO

22039 South Westward Avenue Long Beach, CA 90810-1681 Tel: (310) 834-3401 Fax: (310) 830-4566

August 24, 1993/

Burke Company 3745 E. 50th Street Denver, CO, 80216

Attention: Vern Rider

CERTIFICATION

BURKE WAK EMULSION WEITS D.O.T.

LOT NO. 083492

Burke Wax Emulsion White D.O.T. is manufactured to comply with or exceed the following specifications:

AASHTO M-148, TYPE II, CLASS A ASTM C-309, TYPE II, CLASS A COLORADO DEPARTMENT OF TRANSPORTATION

LABORATORY QUALITY CONTROL EVALUATION

Vehicle
Color: Liquid
Dry Film
Total Solids
Ash Content
Weight/Gallon
Viscosity
Drying Time
Reflectance
Unit Moisture Loss
(AASHTO M-155)

Wax/Resin Oreamy White 19.84 3.00* 8.35 28 CPB 60 Minutes 64* 0.040gm/cm²

EDOCO

Dennis S. Salley Technical Service

cc:

T. Townsend

H. Uyeno J. Watson

THE

The part of All 1 sp 93

OFFICIAL SEAL
JOAN K. ROSE
Notary Public-California
LOS ANGELES COUNTY

My Commission Expires March 19, 1995

W.R. MEADOWS OF TEXAS

SEAUTIGHT.

TELEPHONE: 817-834-1969 FAX: 817-834-013

2555 N.E. 33RD STREET • P.O. BOX 7752 FORT WORTH, TEXAS 76111

> Certificate of Analysis and Performance SEALTIGHT 1610 White Concrete Curing Compound Manufactured by W. R. Meadows of Texas

The following are the test results obtained by our laboratory in testing a sample of SEALTIGHT 1610 White Concrete Curing Compound. Batch # 3TH213

SEALTIGHT 1610 White

Property	Concrete Curing Compound
Color of Compound	White
Solids-Type	Wax-Resin
Solids % @ 105°C	23.2
Specific Gravity 25°/25°C	1.004
Vis∞sity € 40°F	Sprayable
Flash Point °F. TCC	Water Base
Moisture Loss in G/Cm ²	
(200 ft 2/gal 100°F, f30% R. H.)	
24 Hours	.023
72 Hours	.034
Dry Time	60 Minutes
Daylight Reflectance	66%
Degree of Setting	7.8

As indicated by the foregoing test results, SEALTICHT 1610 White Concrete Curing Compound complies with the test requirements of AASHTO M 148, Type II and ASTM C 309 Type II.

4, 1, 1, 2, 3 1, 1, 1, 2, 3

Subscribed and sworn to before me this 14 day of July 19 93

W. R. MEADOWS OF TEXAS

Andrew W. Tam General Manager

Proj.: ID-I-NH(CX)76-1(138)
Adams County, Co.

Contr.: Castlerock Construction

Allun Cample

Project ID: 89015 : ID-I-NH(CX) 076-1(138) DEPARTMENT OF TRANSPORTATION Project Location : I 76 & BROMLEY LANE

Date Transmitted: 11/08/93

Region : 6

Field Sheet: 61286

: CASTLEROCK Supplier

REPORT 0 F CONCRETE TESTS

: 412 Placed At : EBML Item No.

Concrete Class : P Portion : 107+55 114+30

: 10/11/93 Date Molded

Slump : Ø.75 Air: 6.6 Unit Weight: 145

Cylinder Set No.: 02

Specimen Number	Date Tested	Age (Days)	Diam.	Cross- Sectional Area	Maximum Load (1bs.)	Compressive Strength (psi)
1	10/18/93	7	4.01	12.6293	41080	3250
2	10/18/93	7	4.01	12.6293	38980	3090
3	11/08/93	28	4.01	12.6293	54750	4340
4	11/08/93	28	4.01	12.6293	54560	4320
5	11/08/93	28	4.01	12.6293	54910	4350

SHAP section U13, 550 ps. flexural, & thick

Remarks: Cylinders tested in accordance with AASHTO T-22 as modified by CP-66.

DENIS E. DONNELLY

Staff Materials Engineer

Region Const. Engr. Region Matls. Engr. Resident Engr. (2) Contractor (2) c/o RE File

STATE OF COLORADO Project ID: 89015

DEPARTMENT OF TRANSPORTATION Project : ID-I-NH(CX) 076-1(138)
Location : I 76 & BROMLEY LANE

Date Transmitted: 11/10/93 Region : 6

Field Sheet: 61287

Supplier : CASTLEROCK

REPORT OF CONCRETE TESTS

Item No. : 412 Placed At : EBML

Concrete Class : P Portion : 121+35 128+30

Date Molded : 10/13/93

Slump : 1 Air: 7.4 Unit Weight: 142.6

Cylinder Set No.: 03

Specimen Number	Date Tested	Age (Days)	Diam.	Cross- Sectional Area	Maximum Load (lbs.)	Compressive Strength (psi)
1	10/20/93	7	4.01	12.6293	29070	2300
2	10/20/93	7	4.01	12.6293	31250	2470
3	11/10/93	28	4.01	12.6293	41900	3320
4	11/10/93	28	4.01	12.6293	41860	3310
5	11/10/93	28	4.01	12.6293	42170	3340

SHRP Section U15, 550 psi mix, 11 thick

Remarks: Cylinders tested in accordance with AASHTO T-22 as modified by CP-66.

DENIS E. DONNELLY

Staff Materials Engineer

cc: Region Const. Engr. Region Matls. Engr. Resident Engr. (2) Contractor (2) c/o RE

File

Project ID: 89015 DEPARTMENT OF TRANSPORTATION

Project : ID-I-NH(CX) 076-1(138)

Location : I 76 & BROMLEY LANE Date Transmitted: 11/08/93

Region

Field Sheet: 61285

Supplier : CASTLEROCK

REPORT 0 F CONCRETE TESTS

Item No. Placed At : EBML : 412

Concrete Class : P Portion : 101+40 107+55

Date Molded : 10/11/93 : 1.5

Slump Air: 6.2 Unit Weight: 147

Cylinder Set No.: 04

Specimen Number	D: Le Tested	Age (Days)	Diam.	Cross- Sectional Area	Maximum Load (1bs.)	Compressive Strength (psi)
1	10/18/93	7	4.02	12.6924	66790	5260
2	10/18/93	7	4.02	12.6924	71330	5620
3	11/08/93	28	4.02	12.6924	75530	5950
4	11/08/93	28	4.02	12.6924	86910	6850
5	11/08/93	28	4.02	12.6924	84980	6700

SHRP section U16, 900 psi flexural m.x, 11" thick

Remarks: Cylinders tested in accordance with AASHTO T-22 as modified by CÝ-66.

DENIS E. DONNELLY

Staff Materials Engineer

Region Const. Engr. Region Matls. Engr. Resident Engr. (2) Contractor (2) c/o RE cc: File

STATE OF COLORADO Project ID: 89015

DEPARTMENT OF TRANSPORTATION Project : ID-I-NH(CX) 076-1(138)
Location : I 76 & BROMLEY LANE

Date Transmitted: 11/10/93 Region : 6

Field Sheet: 61288

Supplier : CASTLEROCK

REPORT OF CONCRETE TESTS

Item No. : 412 Placed At : EBML

Concrete Class : P Portion : 141+30 121+35

Date Molded : 10/13/93

Slump : 1.75 Air: 6.3 Unit Weight: 146.3

Cylinder Set No.: 05

Specimen Number	Date Tested	Age (Days)	Diam.	Cross- Sectional Area	Maximum Load . (1bs.)	Compressive Strength (psi)
1	10/20/93	7	4.01	12.6293	63610	5040
2	10/20/93	7	4.01	12.6293	63250	5010
3	11/10/93	28	4.01	12.6293	77110	6110
4	11/10/93	28	4.01	12.6293	82140	6500
5	11/10/93	28	4.01	12.6293	77480	6130

SHRP section U14, 900 psi mix

Remarks: Cylinders tested in accordance with AASHTO T-22 as modified by ${\sf CP-66}$.

DENIS E. DONNELLY

Staff Materials Engineer

cc: Region Const. Engr.
Region Matls. Engr.
Resident Engr. (2)
Contractor (2) c/o RE
File

DEPARTMENT OF TRANSPORTATION

Date Transmitted: 11/18/93

Project ID: 89015

: ID-I-NH(CX)076-1(138) : I 76 & BROMLEY LANE

Region : 6

Field Sheet: 61294

Supplier : CASTLEROCK

Air: 6.6 Unit Weight: 144.4

REPORT 0 F CONCRETE TESTS

Item No.

: 412

Placed At :

Project Location

Concrete Class : P Date Molded

: 10/21/93

: 2.5

Portion : SHRP SECTION V18

Slump Cylinder Set No.: 06

Specimen Number	Date Tested	Age (Days)	Diam.	Cross- Sectional Area	Maximum Load ((lbs.)	Compressive Strength (psi)
1	10/28/93	7	4.01	12.6293	61140	4840
2	10/28/93	7	4.01	12.6293	62210	4930
3	11/18/93	28	4.01	12.6293	76010	6020
4	11/18/93	28	4.01	12.6293	81140	6420
5	11/18/93	28	4.01	12.6293	80440	6370

SHIRP U18

Remarks: Cylinders tested in accordance with AASHTO T-22 as modified by CP-66.

DENIS E. DONNELLY

Staff Materials Engineer

Region Const. Engr. cc: Region Matls. Engr. Resident Engr. (2) Contractor (2) c/o RE File

From: Concrete Unit

10-7-93 12:09pm p. 19 of 20

STATE OF COLORADO

DEPARTMENT OF TRANSPORTATION

Date Transmitted: 10/07/93

Project ID: 89015

Project : ID-I-NH(CX) 076-1(138)

Location : I 76 & BROMLEY LANE

Region : 6 Field Sheet: 70757

Supplier : CASTLEROCK

REPORT OF CONCRETE TESTS

Item No. : 412 Placed At : 162+63 TO 169+25

Concrete Class : P Portion : EB LANE

Date Molded : 09/09/93

Slump : 2.25 Air: 6.4 Unit Weight: 145.3

Cylinder Set No.: 03

Specimen Number	Date Tested	Age (Days)	Diam.	Cross- Sectional Area	Maximum Load , (lbs.)	Compressive Strength (psi)
1	09/16/93	7	4.02	12.6924	69940	5510
2	09/16/93	7	4.02	12.6924	72310	5700
3	10/07/93	28	4.02	12.6924	84230	6640
4	10/07/93	28	4.02	12.6924	84060	6620
5	10/07/93	28	4.02	12.6924	82660	6530

Remarks: Cylinders tested in accordance with AASHTO T-22 as modified by

CP-66.

COMPRESSIVE STRENGTH REQUIRED: 3000 PSI

SHRP section UZU, 900 psn'

DENIS E. DONNELLY

Staff Materials Engineer

cc: Region Const. Engr.
Region Matls. Engr.
Resident Engr. (2)
Contractor (2) c/o RE
File

Project ID: 89015
Project: ID-I-NH(CX)076-1(138)
Location: I 76 & BROMLEY LANE DEPARTMENT OF TRANSPORTATION

Date Transmitted: 11/19/93

Region : 6 Field Sheet: 61295

Supplier : CASTLEROCK

REPORT 0 F CONCRETE TESTS

Placed At : SHRP SECTION V19 : 412

Concrete Class : P Portion

: 10/22/93 Date Molded

: 1 Air: 5.4 Unit Weight: 145.7 Slump

Cylinder Set No.: 04

Specimen Number	Date Tested	Age (Days)	Diam.	Cross- Sectional Area	Maximum Load , (lbs.)	Compressive Strength (psi)
1	10/29/93	7	4.01	12.6293	31600	2500
2	10/29/93	7	4.01	12.6293	31100	2460
3	11/19/93	28	4.01	12.6293	42270	3350
4	11/19/93	28	4.01	12.6293	43380	3430
5	11/19/93	28	4.01	12.6293	44620	3530

:HRP 1550 ps. ~12

Remarks: Cylinders tested in accordance with AASHTO T-22 as modified by CP-66.

DENIS E. DONNELLY

Staff Materials Engineer

Region Const. Engr. Region Matls. Engr. cc: Resident Engr. (2) Contractor (2) c/o RE File

DEPARTMENT OF TRANSPORTATION

Date Transmitted: 10/01/93

Project ID: 89015

: I-ID-NH(CX) 76-1(138) Project

: I 76 & BROMLEY LANE Location

Region : 6 Field Sheet: 70754

Supplier : CASTLEROCK

022

REPORT OF CONCRETE TESTS

: 412 Item No. Placed At : 198+54 TO 191+79

Concrete Class : P

: 09/03/93 Date Molded

Slump : 2.5

Cylinder Set No.: 01

Portion : EB LANE

Air: 5.3 Unit Weight: 146.6

Specimen Number	Date Tested	Age (Days)	Diam.	Cross- Sectional Area	Maximum Load ((lbs.)	Compressive Strength (psi)
1	09/13/93	10	4.02	12.6924	78700	6200
2	09/13/93	10	4.02	12.6924	75750	5970
3	10/01/93	28	4.02	12.6924	90990	7170
4	10/01/93	28	4.02	12.6924	87570	6900
5	10/01/93	28	4.02	12.6924	88090	6940

960 ps, mix, SHRP

Remarks: Cylinders tested in accordance with AASHTO T-22 as modified by

COMPRESSIVE STRENGTH REQUIRED: 3000 PSI

DENIS E. DONNELLY

Staff Materials Engineer

Region Const. Engr. cc: Region Matls. Engr. Resident Engr. (2) Contractor (2) c/o RE

File

DEPARTMENT OF TRANSPORTATION

Date Transmitted: 10/01/93

Project ID: 89015

Project : I-ID-NH(CX) 76-1(138) Location : I 76 & BROMLEY LANE

Region : 6

Field Sheet: 70753

Supplier : CASTLEROCK

REPORT OF CONCRETE TESTS

Item No. : 412 Placed At : 206+20 TO 198+54

Concrete Class : P Portion : EB LANE

Date Molded : 09/03/93

Slump : 2 Air: 8 Unit Weight: 140.2

Cylinder Set No.: 01

Specimen Number	Date Tested	Age (Daye)	Diam.	Cross- Sectional Area	Maximum Load ((lbs.)	Compressive Strength (psi)
1	09/13/93	10	4.02	12.6924	31440	2480
2	09/13/93	10	4.02	12.6924	32310	2550
3	10/01/93	28	4.02	12.6924	⊿0180	3170
4	10/01/93	28	4.02	12.6924	39110	3080
5	10/01/93	28	4.02	12.6924	41140	3240

U23

550 psu SHRP

Remarks: Cylinders tested in accordance with AASHTO T-22 as modified by

CP-66.

ASSURANCE TEST PERFORMED BY VIC BROWN

AIR: 7.8% SLUMP: 2"

DENIS E. DONNELLY

Staff Materials Engineer

cc: Region Const. Engr.
Region Matls. Engr.
Resident Engr. (2)
Contractor (2) c/o RE
File

DEPARTMENT OF TRANSPORTATION

Date Transmitted: 10/06/93

Location

Project ID: 89015

Project : ID-I-NH(CX) 076-1(138)

: I 76/BROMLEY LANE

Region : 6

Field Sheet: 70756 Supplier : CASTLEROCK

REPORT 0 F CONCRETE

TESTS

Item No. : 13-24-90 TO 169+27 : 412 Placed At

Concrete Class : P Portion : EB LANE

Date Molded : 09/08/93

Slump : 1.75 Air: 5.8 Unit Weight: 146.8

Cylinder Set No.: 02

Specimen Number	Date Tested	Age (Days)	Diam.	Cross- Sectional Area	Maximum Load (lbs.)	Compressive Strength (psi)
1	09/15/93	7	4.01	12.6293	74310	5880
2	09/15/93	7	4.01	12.6293	75190	5950
3	10/06/93	28	4.02	12.6924	85840	6760
4	10/06/93	28	4.02	12.6924	89260	7030
5	10/06/93	28	4.02	12.6924	87950	6930

Remarks: Cylinders tested in accordance with AASHTO T-22 as modified by CP-66.

SHRP section U24 900 psn.

DENIS E. DONNELLY

Staff Materials Engineer

Region Const. Engr. cc: Region Matls. Engr.

Resident Engr. (2) Contractor (2) c/o RE

File

DEPARTMENT OF TRANSPORTATION

Date Transmitted: 10/21/93

Project ID: 89015

Project : ID-I-NH(CX)076-1(138) Location : I 76 @ BROMLEY LANE

Region : 6

Field Sheet: 61291

Supplier : CASTLEROCK

REPORT OF CONCRETE TESTS

Item No. : 309 Placed At : 140+65 TO 146+90

Concrete Class : LEAN Portion : E. BOUND

Date Molded : 10/14/93

Slump : 1.5 Air: 5.4 Unit Weight: 143.2

Cylinder Set No.: 01 *

Specimen Number	Date Tested	Age (Days)	Diam.	Cross- Sectional Area	Maximum Load (lbs.)	Compressive Strength (psi)
1	10/21/93	7	4.02	12.6924	7980	630
* 2	10/21/93	7	4.02	12.6924	3500	280
3	10/21/93	7	4.02	12.6924	7550	590

Lean Concrete Base SHRP Section U18

Remarks: Cylinders tested in accordance with AASHTO T-22 as modified by

Cb-88.

* Deviation from SHRP Guidelines of 500 PSI - 750 PSI.

DENIS E. DONNELLY

Staff Materials Engineer

cc: Region Const. Engr.
Region Matls. Engr.
Resident Engr. (2)
Contractor (2) c/o RE
File

DEPARTMENT OF TRANSPORTATION

Location

Project

Project ID: 89015 : ID-I-NH(CX)076-1(138) : I 76 @ BROMLEY LANE

Date Transmitted: 10/21/93

: 6 Region

Field Sheet: 61292 Supplier : CASTLEROCK

REPORT 0 F CONCRETE TESTS

Placed At : 140+65 TO 146+90 : 309 Item No.

Concrete Class : LEAN Portion : E. BOUND

Date Molded : 10/14/93

Air: 4.9 Slump : 1.75 Unit Weight: 143.6

Cylinder Set No.: 02x

Specimen Number	Date Tested	Age (Days)	Diam.	Cross- Sectional Area	Maximum Load ((lbs.)	Compressive Strength (psi)
* 1	10/21/93	7	4.02	12.6924	5570	440
* 2	10/21/93	7	4.02	12.6924	6190	490
* 3	10/21/93	7	4.02	12.6924	5690	450

Lean Concrete Buse SHRP Section Ulu

Remarks: Cylinders tested in accordance with AASHTO T-22 as modified by CP-66.

* Deviation from SHRP Guidelines of 500 PSI - 750 PSI.

DENIS E. DONNELLY

Staff Materials Engineer

Region Const. Engr. cc: Region Matls. Engr. Resident Engr. (2) Contractor (2) c/o RE File

To: Sidney Motchan

STATE OF COLORADO

Project ID: 89015 DEPARTMENT OF TRANSPORTATION Project

: ID-I-NH(CX)076-1(138) : I 76 @ BROMLEY LANE Location

: 6 Date Transmitted: 10/21/93 Region Field Sheet: 61293

Supplier : CASTLEROCK

REPORT 0 F CONCRETE TESTS

Placed At : 149+45 TO 155+60 : 309 Item No.

: E. BOUND Concrete Class Portion : LEAN

: 10/14/93 : 1.25 Date Molded

Air: 4.8 Unit Weight: 145.2 Slump

Cylinder Set No.: 03 *

Specimen Number	Date Tested	Age (Days)	Diam.	Cross- Sectional Area	Maximum Load (lbs.)	Compressive Strength (psi)
1	10/21/93	7	4.02	12.6924	7340	580
2	10/21/93	7	4.02	12.6924	7290	570
* 3	10/21/93	7	4.02	12.6924	5430	430

Lean Concrete Base SHRP section U19

Remarks: Cylinders tested in accordance with AASHTO T-22 as modified by

CP-66.

* Deviation from SHRP Guidelines of 500 PSI - 750 PSI.

DENIS E. DONNELLY

Staff Materials Engineer

Region Const. Engr. Region Matls. Engr. cc: Resident Engr. (2) Contractor (2) c/o RE File

Project ID: 89015 DEPARTMENT OF TRANSPORTATION

: ID-I-NH(CX) Ø76-1(138) Project Location : I 76 @ BROMLEY LANE

: 6

Region Field Sheet: 72501

Supplier : CASTLEROCK

CONCRETE TESTS REPORT OF

: 309 Item No. Placed At : STA 155+50 TO 149+90

Concrete Class : LCB Portion : SHOULDER

Date Molded : 10/25/93

Date Transmitted: 11/01/93

Air: 5.2 : 2.25 Unit Weight: 139.4 Slump

Cylinder Set No.: 04-X-

Specimen Number	Date Tested	Age (Days)	Diam.	Cross- Sectional Area	Maximum Load (lbs.)	Compressive Strength (psi)
1 2	11/01/93 11/01/93	7	4.02 4.02	12.6924 12.6924	5590 5270	440 420
3	11/01/93	7	4.02	12.6924	4300	340

Leun Concrete Base 1219

Remarks: Cylinders tested in accordance with AASHTO T-22 as modified by CÝ-66.

*FAILED TO MEET THE 7 DAY, 500 PSI SHRP GUIDELINE.

DENIS E. DONNELLY

Staff Materials Engineer

Region Const. Engr. Region Matls. Engr. cc: Resident Engr. (2) Contractor (2) c/o RE File

DEPARTMENT OF HIGHWAYS STATE OF COLORADO DIVISION OF HIGHWAYS DOH FORM No. 157c Revised August, 1987

FIELD SHEET NO .:

1034

PROJECT NUMBER: 176-1(138)

LOCATION: S.H. 51 to Bromley Lane

DISTRICT: 6 DATE: 08/26/93

FIELD REPORT FOR SAMPLE IDENTIFICATION OR MATERIALS DOCUMENTATION

3200 Ρ 89015 -----Function Part. Project ID No.

SAMPLE SUBMITTED: NO

ITEM: 30110020 CLASS: PERMEABLE ASPHALT

GRADING:

SPECIAL PROVISIONS APPL:YES[] NO[*]

PREVIOUSLY USED ON PROJECT: NO

DOH 157 NO.:

DOH 158 NO.:

DESCRIBE TESTS REQUIRED, USE TO BE MADE OF MATERIAL, AND/OR DOCUMENTATION DETAILS: Density tests on Permeable Asphalt Treated Base. No density

specification.

Test	Date	Location	SHRP Section	Density
1	8/24/93	188+95, 33'R	U21	1.61
2	8/24/93	190+95, 33'R	U21	1.59
3	8/24/93	196+00, 33'R	U22	1.58
4	8/24/93	200+00, 33'R	U23	1.61
5	8/25/93	171+00, 33'R	U24	1.64
6	8/25/93	172+40, 47'R	U24	1.58

backscatter

SAMPLE TYPE:

DATE NEEDED:

CONTRACTOR: B.R.O.C.

SUPPLIER:

SAMPLED FROM:

PIT NAME OR

OWNER:

QUANTITY

PREVIOUS

TOTAL QUANTITY

REPRESENTED:

6000. QUANTITY: TO DATE:

6000.

UNITS: TON

SAMPLE

SHIPPED TO:

SUBMITTED: YES[] NO[*]

CENTRAL LAB[]

DISTRICT LAB[] DATE SHIPPED:

SAMPLED/

INSPECTED BY: FRED BRAUN

TECH III

RESIDENT ENGINEER

SUPERVISOR: Brett Locke, P.E.

Project Engineer

Mar C. Clent

CENTRAL LABORATORY

Denver

DISTRICT OFFICE

DISTRICT MATERIALS ENGINEER

PROJECT FILE #

DEPARTMENT OF HIGHWAYS STATE OF COLORADO DIVISION OF HIGHWAYS DON Form No. 157c

Revised August, 1987

FIELD SHEET NO .:

1039

PROJECT NUMBER: 176-1(138)

LOCATION: S.H. 51 to Bromley Lane

DISTRICT: 6 DATE: 09/15/93

FIELD REPORT FOR SAMPLE IDENTIFICATION OR MATERIALS DOCUMENTATION

3200

Ρ

89015

Function

Part.

Project ID No.

SAMPLE SUBMITTED:

ITEM: 30110020 CLASS: PERMEABLE ASPHALT

GRADING:

SPECIAL PROVISIONS APPL:YES[*] NO[]

PREVIOUSLY USED ON PROJECT: NO

DOH 157 NO.:

DOH 158 NO.:

DESCRIBE TESTS REQUIRED, USE TO BE MADE OF MATERIAL, AND/OR DOCUMENTATION DETAILS: A fractured faces test was run on #57 aggregate used for Permeable Asphalt Treated Base. One hundred precent of the sample tested had fractured faces. The specifications require a minimum of 90% fractured faces for the aggregate.

SAMPLE TYPE: CONST.

DATE NEEDED:

CONTRACTOR: B.R.O.C.

SUPPLIER: B.R.O.C.

PIT NAME OR

SAMPLED FROM: PLANT

OWNER:

QUANTITY

PREVIOUS

TOTAL QUANTITY

REPRESENTED:

QUANTITY:

TO DATE:

UNITS: TONS

SAMPLE

SHIPPED TO:

SUBMITTED: YES[] NO[*]

VIA: CENTRAL LAB[]

DISTRICT LAB[] DATE SHIPPED:

SAMPLED/

INSPECTED BY: FRED BRAUN

TECH III

SUPERVISOR: Brett Locke, P.E.

Project Engineer

Man Edud

CENTRAL LABORATORY

RESIDENT ENGINEER

Denver

DISTRICT OFFICE DISTRICT MATERIALS ENGINEER

PROJECT FILE #

Field Sheet No.:

1010

STATE OF COLORADO Department of Highways Division of High Lys DOH Form No. 58c Revised August, 1987 Revised October, 1990

Project: 176-1(138)

Location: S.H. 51 to Bromley

District: 6

FIELD REPORT OF ASPHALT CONTENT OF BITUMINOUS MIXTURES

Date:

09/15/93

Design Form 157 No.:

Form 43 Date: 08/25/93

Report Number: 1

Final Report:[Y]

CP 42 Method Used: B

Item Number: 30110020

Job Mix Formula Percent AC: 2.5

Range:

			PERCENT
TEST No.	DATE	STATION OF PLACE	ASPHALT
8105	08/23/93	SECT U23	2.75
BT05	08/23/93	SECT U22	2.85
BT04	08/23/93	SECT U21	2.62
BT03	08/24/93	SECT U24	3.80
BT02	08/24/93	SECT U24	3.18
BT01	08/24/93	SECT U24	3.01

^{*} Does Not Meet Project Specifications

Specification Deviations: N

% Test No.:

P =

Action Taken:

REMARKS: PERMEABLE ASPHALT TREATED BASE

Tester: CARL THEWES Title: TECH II

CENTRAL LABORATORY DISTRICT OFFICE

Supervisor: Brett Locke, P.E.

Man E. Cleru

Address: Denver

FIELD SHEET:

1013

DEPARTMENT OF HIGHWAYS

STATE OF COLORADO

DIVISION OF HIGHWAYS

DOH Form No. 6c Rev. August, 1987 FIELD TESTS OF BASE AGGREGATES,

FILLERS AND MISCELLANEOUS AGGREGATES

Project: 176-1(138)

S.H. 51 to Bromley Lane Location:

District:

Report No.:

Date: 09/15/93 30110020 Item No.:

Description: PERMEABLE ASPHALT TREATED E

TEST NO.	DATE	STATION	TONS OF		LAB MAX DENSITY	2-1/2"	2" 	1-1/2"	1"	1/2"	No. 4	No. 8	No. 16	No. 30	No. 40	No. 50	No. 100	No. 200
1	C8/23/°3		1000.					100.	97.	34.	4.	3.						1.5
2	08/23/93		1000.					100.	97.	33.	4.	3.						1.4
3	08/24/93		1000.					100.	98.	28.	3.	3. '						1.1
				Specif	ications:		-	100	95	25	0	0		-				0
		et Total:	_	000.					100.	60.	10.	5.						2.

Previous Total:

3000.

Total To Date:

Final Report: N

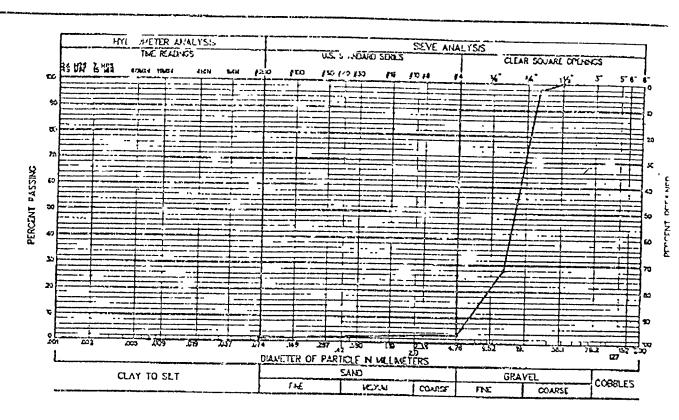
Spec. Deviations: N P = 0.00 % for Lot No.

Action Taken:

dicates Specification Deviation

SOURCE: B.R.O.C.

REMARKS: #57 AGGREGATE USED FOR PATB


Tester: FRED BRAUN

Approved By

Brett Lock Project Engir

CENTRAL LABORATORY DISTRICT OFFICE DISTRICT HATERIALS ENGINEER PROJECT FILE RESIDENT ENGINEER

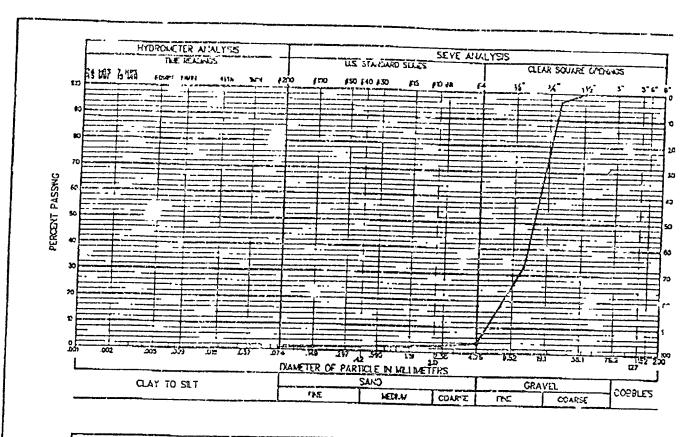
Sample taken from aggregate cold feed at plant

SIEVE SIZE	PERCENT PASSING	SPECIFIED PERCENT PASSING		
1 1/2 1 1/2 #4 #8 #200	100 98 28 3 3	100 95-100 25-60 0-10 0-5 0-2		
GRAVEL 97 %	sano 2 z	SLI AND CLAY 1 %		
TIQUE LIVIT	# PLASTICITY NOON	NPL 7		

SAMPLE OF: #57 Rock

FROM: 1-76

PROJECT: ID-1-NH (CX) 76-1 (138)


DATE SALPLED: 8/27/93

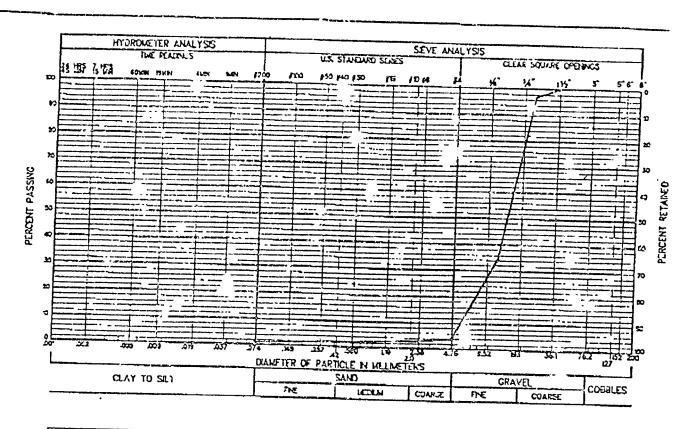
Sample 3

93-247

Kumar & Associates

GRADATION TEST RESULTS

SIEVE SIZE	100 97	PASSING	PERCENT PASSING 100 95-100			
1/2 #4 #8 #200	33 4 3 1.4		25 0-	5–60 -10 -5		
FRAVEL 96 %	SAND 3	z	SET AND CLA	y 1 я		
Dom real	Z P	LASTICITY NOEX	NPL x			


SALPLE OF: #57 Rock

FROM: 1-76 PROJECT: ID-1-NH (CX) 76-1 (138)

DATE SUPLED: 8/27/93 Sample #2

93-247 Kumar & Associates GRADATION TEST RESULTS

TO

SIEVE SIZE	PERCENT PASSING	SPECIFIED PERCENT PASSING
1 1/2 1 1/2 #4 #8 #200	100 97 34 4 3	100 95-100 25-60 0-10 0-5 0-2
GRAVEL 95 %	SAND 2 %	SELT AND CLAY 2 %
באבו ביסטט	7 PLASTICITY INDEX	NPL z

SAMPLE OF: #57 Rock

FROME 1-76 PROJECT: ID-1-NH (CX) 76-1 (138)

DATE 5/10PLED: 8/27/93 Sample #1

93-247 Kumar & Associates

APPENDIX C

MATERIAL THICKNESS MEASUREMENTS

SUBJECT ELEVATION SURVEY SECTION U-13 STATION 108+65 TO 113+65

33 437 CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO . DATE DATE OF OF

11.00	COPIDA		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
LAGAL	SUBGRADI	€				,
	1 1			3	4	- }
1	E-IV	0.693	0.746	6.814	-0.270	0.948
1	E-13	0.804	0.489	-0.965	0.960	1.080
	E-14-	6.964	1.060	1.122	7.170	1.235
	-E-11	1.102	1.232	-1.27-8	-1.302	1.376
	E-16	7.306	7.421	4.462	1.500	1.555
	E-17	1.466	-1,544	1.623	1.660	1.744
	-f./c	1.619	1.730	1.79.4	1.822	1.893
	-E-19	1.846 -	1,949	1.99-3	2.034	2.166
	E-lo	2.016	2.119	2.178	2.212	2.282
	_£-21.	7.246	2.340	2.395	2.422	2.500
	-E-22	2.462	2.550	2599	2.643	Z.78%:
			,		·	
					•	
	-11				- 	

SECTION U-13 STATION 108+65 TO 113+65

34 437 CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

(4.10	1805 CO	1.0CF	<u> </u>	, ,		
- LA J.AZ	8956 CO	2) (2)				
			Z·	3	. 1	
	E-h	1.172	1.728	1,325	1.400	1.450
	E-13	1.302	1.353	1.425	1.468	-1.516
	E-14	7.477	1.542	-1.593	1.657	1:715
	E-15	-1-620	1.694	1.751	1.802	1.852
	E-16	1.764	1.268	1.926	1.936	2.024
	E-17	-1.972-	2.012	2.092	2. 138	2.203
	E-16	Z./19	2.200	7.258	2308	2382
	E- 19.	2344	z. 414 .	z. 463	7.528	2.598
	E-70	2.583	7.626	Z.C88:	2.735	2.812
	E-21	2.767	2.034	2.08	2.732	Z.996
	-E-70	7.972	-8.048	3.182	3.166	3.232
					-	-
					- , - !	-
·	1 ,				1	-
					 	-

SECTION U-13 STATION 108+65 TO 113+65

CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

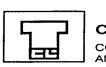
		<i></i>		, ,		
LATER	B8)56 10	SUBGRADE			_	
1						
					+	
		 	Z		· 4	
	1.	0.479	0.402	0.511	0530	6,502
	E-h	5.75	5.78	6.13	6.36	6.02
		0.498		0.470		<u> </u>
	E-13-	5.98	0.464	il /	0.508	0.476
				5.64	6.10	5.71
	E-14	0.513	0.402	8.476	0.467	6.483
	· ·	6.14	5.78	J 5.74-	5.60	5:80
	-E-15	0.518	0.482	0,473	0,500	0.416
	-L /3	6.i2	5.42	8.68	6.00	5.71
	-E-16	0.475	0.447	0.16:1	0.436	0.469
	- 10	(14	5.36	5.57	(5.23)	5.63
	E-17	0,506	0.468	0.469	0.418	a459
		6.07	5.62	563	5.74	5.51
	· E./9	0.500	0.470	6.474	0.496	0.484
	L 13	6.00	5.64	5.69	5.83	5.81
-		0.498	0.465	0.490	0.494	0492
_	- E-Fi	5.98	5.58	5.98	5.93	5.90
1	- E-lo	0537	0507	0.510	6523	0.(30
<u> </u>	- E-10	6.44	6.68-		628	6.36
		0.52.1		0X03	6.510	0.496
	E-2/_	6.75	5.93	6.04	6.12	5.95
	67	6.520	0,498			
	-E-22	6.24	5.98	6.583	6.28	0.524
			3.10			6.19
		- (10 8.3.	-4-2 7-4-	U5.09	us 47	7.5 -
			C 7 :	5.9	6.0	59
	-	<u>(6.</u>]	. 57		-	
		f f t		5.91)		
		,				
!						
	 		1			
		, ,	1			
	1	· · ·	- +			

SUBJECT ELEVATION SURVEY SECTION U-13 STATION 109165 TO 13165

3(#37 CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

			(BY DERENT	BBCK PAGE	<u></u> of
	/			/ /		
LATER	CONICRET	E Payone		•	1	t
ļi		ļ			• • -	
		- /- ;		3	1	5
				il		<u> </u>
	E-/2	1.885	1.994	2.060	2.108	7.180
	·					1 /2-
	E-13 -	7.023	2/36_	-2.198	2.252	2.3/8
,	L 1)		750	6.770	23.03.2	2.078
	E-14	2-1/2	-7-3	7.210	7 200	7.101
	L - / 7	2.150	2,260	23/8	2.370	2.436
				, -		1
	E-15	2.318	2.422.	2.420	2.542	2.615
,						
	-E-16	2.492	2.596	2659	2.720	2784
		2.,,,,	0.476		2.700	/
	. E-17	2.668	70-1	2 022	2 6 0.0	236.1
i	LIII	2.660	2.771	2.837	2.888	2.954
, ,	<u> </u>				- /	
	E-18	2.324	2.928	2.995	3.050	3.113
,				_	-	
	E-19	3.034	-3./37	3.200	3.253	3.324
			3.73	,, = 0		3.50
	-E-20	B-788-	- pari	7.200	211	2/ ;
l	L 20	3.286	3.334	3.398	3.452	3.524
						· · · · · · · · · · · · · · · · · · ·
	-E-2.1	3.432 -	3,534	-3.595	3.654	3.721
			!			
	E-72	3:150	3.752	3.821	3.275	3.946
					7,073	2,1,1,0
			- ,	******	***	
		· ·			•	
:						
	-					
					- !	
		1				
	-			,		
		1			!	-
						
· ' '·			'	1		
		Ŧ				

SUBJECT ELEVATION SURVEY SECTION U-13 STATION 103165 TO 113 HES



77°87) CTL/THOMPSON, INC.

CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

	/		-	107-6154	PAGE	
10000	Concrete	16 BAC6	<u></u>	γ		
LAJUE	SUIGE LETE	VO UPIDE		-		
			·			•
			•			
	'	,		3		
		-		<u> </u>	<u> </u>	1
	E-12	0.713	0.766	0.735	0.708	6.730
		- 8.56	9.19	8.82	8.50	8.76
		0.726	0.786	0.773	0.784	0.762
	E-13		9.40	- 9.28	/9/1	
		2.71	7.90		(9.41)	9.14
	E-1/-	0.173	0.718	0.720	0.733	0.718
	L-19	3.03	3.61-	8.64	8.80	361
	ا ر ۔۔ ۔۔۔	0.698	2.739-		 	
	-E-15			0.719	0.740	0.763
	- /J	8.38	0.86	8.75	9.88	9.16
	-E-11	0.703	0.728	0.733	0.794	0.760
i	L 16	3.50	974	3.80		9.12
	-E-h-	0.696	0.753	0.745	0.750	0.751
	,	2.35	9.11	2.94	9.00	9.01
! 	- E.10.	0.765	0.708	0.737	0.742	0.731
	L 10	8.46	274	8,84	6.90	8.77
		0.690	<u> </u>			
	E-19		0.723	0717	6.74	0.726
	- //	8.28	0.68	8.60	8.70	8.71
	- E-73.	0.663	0.708	6710	0.717	6.712
	<i>L</i> 10	8.20.	- 0.50	8.52		9.54
ļ - · : ;		0.665		Y		
	E-Zj		0.700	0.707	0.722	0.725
, ,		(1.98)	8.40	8.48	8.67	2.70
	E-22	0.578	6.701	0.77	0.709	0.714
	·	- 3.14	245	9.63	9.51	8.57
ļ			· · · · · · · · · · · · · · · · · · ·	96.3	01 29	97.09
		aske4	96.69	8.75	97.39 8.85	8,83
		8,33	8.77		p. 0-	
	-			:		
·						_
		i			-	071
						_8, <u>'</u>
		+-		1	-	
		!			;	-
		:		_	• .	
					- ,	

SUBJECT ELEVATION SURVEY
SECTION U-14
STATION 1/5/70 TO/20170

CTL/THOMPSON, INC.
CONSULTING GEOTECHNICAL
AND MATERIALS ENGINEERS

		h	1	,		
LATER	Seggan	ré .	-		· •	1
					•	1
	1		-Z	3	4	- 5
	E-23	0.300	0.382	0.435	0.474	0.558
	E-24	0.506 -	0.593	0.6:/3	0.682	6.760
1	-E-25-	0.702	0.786	0.843	0.882	0.952
	-E-26	0.916	0.988	1.056	1.099	1.170
9	-E-27	1.132	1.221	-1.279	1.318	1.384
	£-78.	1.340	1.425	1.474	1.514	1.591
	- E. Z9	1.533	1.619	7.664	1.716	1.794
	- E-30	1.768	1.436	1.988	1.920	1.996
	-E-31	1.946	2.014	2.102	2.150	2.272
	- £-32	2.172	2.773	2.313	2.367	2.437
	E-33	7.378	2.442	2.493	2.548	2.628
,		₁				
		- '			_	
* ·				,		- :
				- · -	;	

SUBJECT ELEVATION SURVEY
SECTION U-14
STATION 1/5170 + 120170

CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOBNO DATE

BY AJ CREEKARUJO PAGE 12 OF

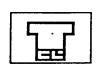
LATIR	BASE COU	256				
	1				· · · · · · · · · · · · · · · · · · ·	,
			2-	· · · · · · · · · · · · · · · · ·	4	\(\)
	E=73-	0.802	0.861	0.922	-0.984	1.048
1 ,	E-2.4-	0.992-	1.059	1.136	1.190	1.259
1 1	-E-25-	1.195	1.268	1.344	1.461	1.474
	-E-76.	1.408	1.479	1.550	1.6h	1.680
- 1	E-27	1.674	1.682	1.750	1.818	1.898
	E-28	1.061	1.902	1.965	1.978	2.080
	- E-29	2.042	2.890	2.140	2.206	2.275
	· E-30	2.269	7.31.8	2:362-	2.412	2.476
	-E-31	2.492	7.5 30	2.136	7.636	2.690
	- E-32.	2.706	2.744	2.796	7.853	2.918
	- E-33	Z.896	7.930	2.999	3.056	3.116
					-	
				•		
					<u></u>	

SUBJECT ELEVATION SURVEY
SECTION U-14
STATION 115+70 to 120+70

93 at 45 CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

	Proces					
LATER	F6/58 10)	0392108			:	:
·	ļ ·				+	
 , 			- 2	- 3·	1	- 5
	- 74	0,502	0.479	0.497	0.510	0.490
1	E-23	6.00	5.75	5.84	6./2-	5.88
		0.486	0.416	0.495	0.508	0.499
	E-24-	5.83	559	5.94	-6.10	5.99
	F-25	0.493	0.482	0,501	0.519	C.522
	5-52	5.92	5.78	6.61	673-	6.26
	E- 21	6.492	0.497	C. 194	0.513	6.510
	E= 21	5.70	5.89	-/5.93	6.16	6.12
<u></u>	E- 27	0,492	6.461	B.471_	0.500	0.5/4
	- 4	5.96	5.53	6.65	6.60	6-17
	E-28	0.521	6.477	6.491	0.464	0.489
	- 66	6.25	5.72	5.29	5.57	5.87
	- E-29	0.509	0.41	0.476	0.490	0.481
	- 01	- 6./1	5.65	5.71	5.88	5.77
	- E-30.	0.501	6.482	CY14	0.492	0.480
		6.01	5.78	5.69	5.90	5.76
	-E-31-	0.546	0.5/8	0.46.4	0.485	6.468
		6.55-	6.22	5-8/-	5.87	
	-£-32	0.534	0.466	0.178	0.486	0.40.1
, ,	L	6.41	5.60	5.74	5.83	5.77
	-E-33	0.568	0.488	0.506	0.500/	0.468
		6.84	5.86	6.0-j	6.6V	5.86
		67.72	; 63,3 7	64.28	65.03	6507
			:			
		w-a	(-9)		• • • ·	
			3.1			
		+				
, ,	1		1	1		
	 					
			1 '			
			-:	 -		
l	<u> </u>	<u></u>	• •			

SUBJECT ELEVATION SURVEY
SECTION U-14
STATION 1/5+70+6/20+70


CTL/THOMPSON, INC.
CONSULTING GEOTECHNICAL
AND MATERIALS ENGINEERS

JOB NO DATE

BY. A J FRENZA Die PAGE / Y OF ____

			B	y. N. J. J. C. E. C.	PAGE.	OF
LATER	Conschere	Postements			•	
	1	, ,				
		<i>,</i>	Z	3.	4	5
	•	1.502		1.619	7.675	1.734
	E-14	-1.710	7.766	1.829-	1.324	1.944
	E-25	1.912	1.963	7.02.9	7.024	-2:144 -
	E- 76	2.125	2./83	2.244	2.296	7.360
-	E-27	2.330	2.387	2.445	2.497	-2.555
	-E-28	2.534	2.596	2.654	2.710	z.769
_	F-29	7.739	2.800	7.256	2.914	7.977
·	E:30	2.960	3.010	3.074	3.12.6	3.182
-	E-31:	3.176	3.230	3.788	3.342	3.400
· •	E-32	-3.380 -	3.433	3.494	3.544	- 3.608
	E-33	3.52	3.635	3.692	3.745	3.810
			-			
				· · · · · · · · · · · · · · · · · · ·		

SECTION U-14 STATION 1/5+70 TO 120+70

75 of 95 CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO. DATE DATE OF DATE OF

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.23
E=23 0.700 0.697 0.697 0.691 0.69 E=23 0.700 0.697 0.697 0.691 0.69 E=23 0.718 0.707 0.691 0.694 0.63	8.23
E-23 0.700 0.697 0.697 0.691 0.68 8.36 8.36 8.29 0.691 0.694 0.66	8.23
E-23 0.700 0.697 0.697 0.691 0.68 8.36 8.36 8.29 0.691 0.694 0.66	8.23
E-23 0.700 0.697 0.697 0.691 0.68 8.36 8.36 8.29 0.691 0.694 0.66	8.23
E-2J 0.718 0.707 6.691 0.694 0.66	8.23
F-2J 0.718 0.707 6.691 0.694 0.68	
	?5
8.62 8.48 -3.29 8.33	3.72
F-28 0.717 0.300 0.695 0.693 0.6	70
3.60 5.40 8.20	8.04
0.631 0.701 0.631 0.63	
E-26 8.60 8.45 8.33 8.21	3.16
E- 27 0.706 0703 8,40 0.695 0.679 0.65	
3.47 2.46 2.34 3.15	7.88
197- (1984) (1984)	9
E-26 8.08 0.649 8.27 8.27 8.78 0.68	9.27
E. 79 0517 0.710 0.716 0.703 0.7	8.4
019/ / 0/0 / 00/1/ / 00/1/	
E-30 0.69V 0.71V 0.714 0.71 0.71	3.47
	بر
8.21 8.38 8.42 2.48	-852
E-32 0.674 0.689 0.689 0.691 0.691	2
2.67 2.27 2.38 2.27	8.28
E-33 0.686 0.705 0.675 0.695 0.695	
6.23 6.46 832 8345	3.33
92.14 90	,82
+ 	:
 - - - - - - - - - - -	• -
	-
	.
- ·- ·- · - · -	
+-	

SUBJECT. ELEVATION SURVEY
SECTION U-15
STATION 122765 TO 127165

340438 CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO: DATE

BY: DEPLOYER PAGE OF OF

LATER	SUBGRAD	16				
				•		/
			Z:	3	4,-	- /
	1	0.300	0.970	1.830	1.037	1.108
	E-35-	1.102	1.182	_1.7_40	1.259	1.350
	E-36	1.339	1.419	7.473	1.486	1.556
	-E-37	1.540	1.598	1.668	1.699	1.789 -
1 '	£-38-	1.733	1.214	1.886	1.9n	1.992
	<u> </u>	1.396	2.006	7.054	2.082	2.160
	- F.40	2.113	2.216	2.251	2.266	2.346
	E-41-	2.384	2.41	2.494	2.528	2.581
	E-42	2.570	2.636	2.710	2.719	2.794
	E-43	2.769	7.942 -	-2.92.6	2.939	3.014
	-E44	2.982	3.050	3./18	3.122	3.206
,				ı		
	_					1
·						
	,		, , , , , , , , , , , , , , , , , , , ,		•	:

SUBJECT ELEVATION SURVEY
SECTION U-15
STATION 122465 TO12.7465

SFOF 38 CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO DATE

BY AUGUSTOUS PAGE 17 OF

	Phor A					
LATER	BASE Cor	236				
				3	4	<u></u>
	E-34	1.398	1.443	1.908	1.578	1.658
	E-35	1.608	1.657-	1.726	1.783	1.851
	E-36	1.840	1.833	1.944	-Z.008	2:072
	E=37	7.037	2.024	2.143	2.200	2.264
	E-38	2.248	2.294	2.354	2.418	2.487
·	E-39	Z.405	2.469	2.530	2.616	2.668
	E.1/0	7.68	2.663	2.729	2.796	2.872
	E:41_	2.863	7.924	2.991	8.051	3.113
	E-42	3.094	3.140	3 200	3.250	3.316
	E-13	3.271	7.33.6	3.392	3.452	3.509
	E-14	3.461	3.519	3.575	3.641	3.712
		1				
		1				

SUBJECT ELEVATION SURVEY
SECTION U-15
STATION 122165 TO 127165

36 of 38 CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO, DATE DATE A JCREAL SIR SUR PAGE 18 OF

LAYER	BASE TO	SURGREDOE				,
		1				· ,· ·
				3	- 4	_ <
; ;	E=34	0.598	0.473	0.478	0.541	0.50
	E-35-	0.506	0.475	0.486	0.524	6.501
	E-36	0.501	0.469	0.471	0.522	8.516.
	E-37-	0.197	0:456	0.478	0.501	0.475
	E-38-	0.510	0.480	0.468	0506	6.495
i ,		0.509	0.463	0.476	0.534	5.94
	£-39.	- 6:11	5.56	5-71	6.41	6.10
	F. 40	0.195	5.42	0.478	0.530	0.526
	E-41	0.40.4	6.24	0.497	0.523	0.537
	E-42	6.524	0.454	0.490	0.531	0.522
	£-43.	0,500	0.494	!!/	0.513	0.495
	E-44	0.179	0.469	0.457	6.23	0.506
		67.26	6283	129	1 68.93	17.50
	1	6.11	5.71	5 72	6.27	. le.14
					4	
	- 4-			(5.99)		
	 		1 1 1 1		↓	
			 		-	

SUBJECT ELEVATION SURVEY
SECTION U-15
STATION 122+65 10/17+65

370438 CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO DATE DATE PAGE 19 OF OF

	/		A	Y. NO THEELER	PAGE	<u> </u>
LATER	CONCRETE	Myonest				
		,	- 2	3	4	
	E-34	2.360	2:414-	2.474	2.130	2.594
	-E-35	2.576_	2.624	Z.687	2.744	2.807
	E-36	Z.792-	2.850	2.909	2.964	3.026
	-E-37	- 2.968 .	3.030	3.088	3.154	3.218
	-E-38	3.187	Z.250	3.310	3.365	3.422
	E-39	3.360	3.422	3.481	7.545	3.610
	E.40	3.552	3.608	7.680	3,733	3.800
	E-41	3.794	-3.852	3.914	3.964	4.030
	-E-42	4.079	4.684	-4.138	4.192	4.760
	E-43	4.748	4.303 _	4.360	4.412	4.47 g
	E-44	4.444	4.498	4.163	4.618	4,676
		_				
						· -
1			1			·

SUBJECT ELEVATION SURVEY
SECTION U-15
STATION 12465 TO 12765

SEOFS8 CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

DATE DATE PAGE OF

·		_ В	V NO GREGIE	PAGE PAGE	OF
. 1		-	/ /		
LAYER CONCRETE	JO ESISE	1			
21/42		:			
		:		į	! , -
		- ,			
		Z	,	و	. /_
1 1	7	6.5	3	4	3
2./	0,962	0.971	0.966	0.952	0.936
E=34	10,00			<i></i>	· /. 1
	11.54	11.65	11.59	11.42	//.23
	0.968	0.967	6961	0.961	0.956
				11.53	
	11.62	11.60	11.53		11.47
1 - 2.	0.952	0.962	0.965	0.956	0.754
E-36					
	11.42	11.54	11.5	11.47	11.45
	0.731	0.746	0.945	0914	0.954
E-37	11.17	11.35	11.34	11.45	
					11.45
	0.939	0.956	0956	0.947	0,935
7.30	11.27	11.47			
			11.47	11.36	11.2v
	0.955	0.953	0.957	0.929	0.942
	11.46	11.44	11.41	11.15	11.30
	<u> </u>				
	0.944	0940	0.951	0.937	0.923
L 70	11.33	11.28	11.41	11.24	11.14
	<u> </u>		1/		
	0.926	0.928	0.923	0.913	0,912
- E:4/	11.11	11.14	11.08	10.96	(10.94)
E-42;	0.935	0.944	0.738	3,942	0.944
L / L.	-11.22	-11.33	11.26	11.30-	- 11.33
		·	/	1,1,0-	- 1103
	0.977	0.967	0.968	0.960	0.909
E-43	11:72	11.60	11.62	1152	11.63
					
	0.993	0.979	0,748	0.974	0.964
	11.80	11.75	11.96	11.69	1/57
		17			
	125.66	12615	126.15	125.09	724.73
,	· · · · ·	(1	:	-	-
		(4)		!	•
-		1 (14)			
· · · · · · · · · · · · · · · · · · ·				· 	w named to
	:				
				-	
			-		
			• -	- g minus	
	i	!	•		i

SUBJECT. ELEVATION SURVEY
SECTION U-16
STATION 101+90 To 106+90

CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

LATER	SuggaDo	F				
!					·-··· -·	/
		7		3	4	
1 1	E-1	0.9/2	7.019	11	1.106	-1.177
	E-2		1.134	1.180.	1.7.00	-1.292
		-1.168	-1.231	-1318 -	1.566	1430
	' '		1.402	1.443	1.475	1.5.48
	E-5	-1.386	-1.510	1.550	1.582	1.664
	E-6	1.484	_1.607 .	1.657	1.677	7.777
	- E-7	1.582	1.726	1.747	-1.778	1.860
	E-8	1.697	1.827	1.367	1.92.4	1.979
	E-9	1.765	-1.273	1.986	1.936	1934
	E-10	1.877	1.974	2.025	-2.570	2.178
	-E-11	2.013	2.103	2.172	2,236	2.310

SUBJECT ELEVATION SURVEY SECTION U-16 STATION 10/190 TO/06/190

29 or 32 CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOBNO DATE BY A JGREN JAROJR. PAGE 2- OF

LAJER	BASE COL	258				
	1				1	
	1		1.499	•	1.610	-1.689
	E-2	1.511	1598	-1.658	1.709	1.784
	E-3	1.652	7.716	1.788	1.822	1.904
	£4.	1.170	1.852	1.92.2	1.968	-2-622
	F.5	1.864	1.952	1.999	2.055	2.135
	-E-6-	1.990	Z.063.	2.125	2 182	2.242
	-£.7	7.884	2.174	2.232	2.297	2.357
-	E.8	2 195	2.236	7.358	7.421	2.470
	E-9	2.288	7.370	2.453	Z. 4 94	2.526
	E-10-	2.414	2.515	2.596	2.641	7.688
	-E-11/	7.518	1.612-	7.680	1.755	1.802
			,			
(E	-11 contino	2 POINT	PISTURB	-015 K	egan-o	·
		-	1			

30 432 CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOBNO DATE

BY DEPERTAPATED TZ PAGE 3 OF ____

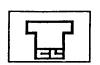
1000	18ASE TO	Sosgapo	25	γ		
LATER	-	+ /				
	 					<u> </u>
	,					
	1	7	2	3	1	5
<u>.</u>		0.514	0.480	0.518	0.504	0.5/2
		6.17	5.78		6.65	6.14
;	F 7.	0.185	0.464	0.478	0.569	6.492
	E-Z	5.92	5:57	5.74	6.11	5.90
	F-3	0.484	0.435	0.470	0.456	0.474
- '	<u> </u>	5.31	(5.2)	5.64	-5.42	5:69
		0.490	0.450	0.479	6.493	0.474
	E-:4	3.88	5.40	5.75		5.69
		0.178.	0.412	0.149	0.473	0.471
	- L J	5.74	ı / / i		5.68	5.65
i	<u> </u>	0.506	0.456		0:505	0.465
	E-1	6.03	5.47		6.06	5.58
	F·7	0.502	6.448	6.495	0.519	0.497
		6.02	· / i		6.23	5.96
		0.498	6.459	0.491	0.497	0491
	E·8	3.78	5.51	5.89	5.96	5.89
1	(- 0	0.523		0.532	05(8	0.592
1	E-9	. /	6.50		670	7.10
		0.537			0,571	6.510
	E-10	6.44		0.211	6.25	6.12
<u>'</u>	6 1,			/ (0,0)	/ 0.63	
·	E-11				-	
		-174		-20-3	ا	-59.72
·	+	54.14	566	39.3	ا د ۱۰۰۰	
		-			-	-
	I					
			(59)		-	
1						
				1		
1		İ			i	

SUBJECT ELEVATION SURVEY
SECTION U-16
STATION 16/140 TO 106/190

3/ P3 CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

LAYER	CONCRET	e Palonal	<u> </u>	, ,		· · · · · · · · · · · · · · · · · · ·
		17 1	2	3	4	
	E-1	2.378	2.177	7.537	7.586	7.652
	E-V	7.486	2.580-	-2.639-	7.687	-2.748
	E-3	2.599-	Z. 691	Z.753 · -	7.900	2.860
	-E- Y	2.724	2.924	7.890	2.742.	-3.008
1 1	E-5	7.838	2.932	7.998	3.046	3-/13
1	E-6	-Z.9Z3	3.016	3,076	3.128	- 3,193
	E.M.	3.644	3./37	3.196	3.248	3.314
	E. E.	3.152	3,250	3.308	7.360	 3.42.4
	E-9-	3-267	3.329	3.432	3.462	3.553
,	_£-10-	3333	3.480	3.544	3.592	3.663
	E-11	3.50L	3.593	3.658	3.708	-3.774
!	1		1			
						
	- 					

SUBJECT ELEVATION SURVEY SECTION U-16 STATION 10/190 TO/06+90


320232 CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO DATE
BY A JERRAL CARO JIZ-PAGE SOF

	1		- '	, <u> </u>	PAGE	OF
10000	CONCRETE	TO RAIL	<u> </u>			
LAGUE		70 5732		-		1
	<u> </u>					K
 				·		
1,		7	Z	3		5
ſ	- 11	0.952	0.978	0.965	0.976	0.163
	E-1	11.42	11-73	11.58-		11.56
		0.975	0.932			
	F-7.			0.931	0.978	0.901
	· •	11:70	11.78	11.77	11.74	
<u> </u>	E= 3-	0.947	0.975	0.965	0.978	0956
	2	11.36	11.70	11.5-8-	iJ.74 -	11.47
		5.954	0,972	0.968	0.974	6.986
	E= 4-	11.45	11.00	11.62	11.69	11.83
	- 4					
1	-E. 5	0974	0.990	0.999	0.991	6.978
		11.69 -	11.76	11.99	11.89	-11.74
	F- (0.933	0.953	0.951	0.946	0951
	·- L	(11.20)	71.49	11.41	11.35	11.41
	F.7	0.960	0.963	0.961	0,951	0.957
	L. /	11.52	11.56	11.57	11.41	11.48
		0.957	0.464	<u> </u>	6.939	
	E- 8.	11.48		0.950		0.954
<u></u>			11.57		11.27	11.45
:	E-9:	0.979	0.999	0.974	0:788	1.027
		11.75	11.79	11.69	11.86	12.32
		0974	0.963		6.951	0.975
	£- 16.	11.69	71.58	11.38	11.41	11.70
<u> </u>		11.01	/ 11.30			
	E- 11-					
		115.26	116,77	115 99 -	11to.07 - :	-116.53
					:	;
!			1 1			
· · · · ·	·			- 1		
				(10)	-	- ;
 		·		11.6		-
					!	
			!			
				-	ŀ	

SUBJECT ELEVATION SURVEY
SECTION U-17
STATION 156155 10 16/15

CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOBNO. DATE DATE BY ASLACE SI OF PAGE 31 OF

LAMA	Substit	36				
LATER		le l				
			Z	3	4	5
	E-67	0.966	1.076	1.128	1.175	9.245
	E-68	-0.77.8	6-650	0.395	-0.920:-	1.63.4
	E-69	0.570	0.632	0.682	8736	0.238
	E-70	-0-3-6-6+	0.420	0:139	-0.175	-4682 <u>-</u>
	E-71	0.778	0.382	6.1/3	0.472	0.559
	6-72	-6.706	0.315	0352/	0.408	-c.492-
	E-73	0.229	0.322	0.368	0.407	0.484-
	E-74	0.277	0.325	0.372,	6.406	0.490-
	E-75	0.293	0.353	0.462	0.464	0.578
	E-76	0350	0.45.2	0.532	0.526	0.648
	E-77	0338	0.481	4.592	0.698	0.722
	,					
						<u> </u>

SUBJECT ELEVATION SURVEY
SECTION U-17
STATION IS6155 10 16/155

CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO DATE

BY. // / Adaly ARIR_ PAGE 52 OF_

LOTER LEASE ESSE E-67 1.469 1.504 1.661 1.705 1.779 E-68 1.272 1.386 1.484 1.570 1.576 E-69 1.292 1.386 1.484 1.570 1.576 E-70 0.902 1.032 0.093 1.159 1.244 E-71 0.752 0.852 0.924 0.990 1.051 E-71 0.762 0.853 0.924 0.964 0.053 E-73 0.760 0.853 0.914 0.966 1.030 E-74 0.836 0.990 1.046 1.030 E-76 0.836 0.990 1.046 1.033 1.750 E-76 0.836 0.990 1.044 1.093 1.750 E-77 1.069 1.775 1.230 1.252 1.394	•		/		3y. <u>- 7 0 7 2 3 3 5 7 .</u>	PAGE	
E-69 1.272 1.386 1.484 1.510 1.574	LATER	LEAN CAIN	CLETE BOST		:		
E-69 1.272 1.386 1.484 1.510 1.576 E-68 1.272 1.386 1.484 1.510 1.576 E-69 1.086 1.203 1.259 1.314 1.381 1.204 1.082 0.993 1.189 1.204 1.204 1.204 1.204 1.204 1.204 1.204 1.204 1.204 1.204 1.204 1.204 1.204 1.205			<u> </u>				
E-67 1.469 1.524 1.661 1.725 1.779 E-63 1.272 1.326 1.454 1.510 1.576 E-63 1.272 1.326 1.454 1.314 1.321 E-70 0.302 1.032 0.093 1.159 1.224 E-71 0.752 0.252 0.924 0.990 1.051 E-71 0.760 0.253 0.914 0.966 1.030 E-73 0.760 0.253 0.914 0.966 1.030 E-74 0.302 0.296 0.752 1.000 1.062 E-76 0.336 0.990 1.046 1.093 1.150 E-76 0.336 0.990 1.046 1.093 1.150 E-76 0.970 1.074 1.142 1.190 1.248				Z	3	1	5
E-10 0-902 1.032 0.093 1.159 1.204 1.031 1.07 1.204 1.032 0.974 0.990 1.051 1.051 1.050 0.332 0.914 0.966 1.030 1.050 1.052 0.336 0.914 0.966 1.030 1.062 1.000 1.062 1.074 1.190 1.248 1.190 1.248 1.190 1.248 1.190 1.248		E-67	1.469	1.504	1.661		1.779
E-70 0-702 1.032 0.093 1.159 1.204 1.051 1.204 1.051 1.204 1.051 1.204 1.051 1.204 1.051 1.204 1.051 1.204 1.050 1.051 1.050 1		E-68	1272	1.386	1.454	1.510 -	-1.576
E-76 0.757 0.857 0.974 0.990 1.051 E-71 0.757 0.852 0.974 0.966 1.080 E-73 0.760 0.853 0.914 0.966 1.080 E-74 0.302 0.396 0.752 1.000 1.062 E-75 0.236 0.390 1.046 1.093 1.150 E-76 0.970 1.074 1.142 1.190 1.248 E-77 1.069 1.175 1.270 1.282 1.344		E-67:	1.086	1.203	1.254	1.314	1.3.81
E-76 0.970 1.074 1.190 1.248 E-77 1.069 1.175 1.270 1.282 1.394		-E-70	0-902-	1.032	1.093	1.159	1.204
E-75 0.336 0.990 1.096 1.093 1.150 E-76 0.970 1.074 1.190 1.248 E-77 1.069 1.175 1.270 1.232 1.344		E-71	0.752	0.852	0.974	0990	1.051
E-75 0.236 0.990 1.046 1.093 1.150 E-76 0.970 1.074 1.142 1.190 1.248 E-77 1.069 1.175 1.270 1.232 1.344		E-72	0706	0.31	0.892-	0.964	0.013
E-76 0.936 0.990 1.076 1.093 1.150 E-76 0.970 1.074 1.142 1.190 1.248 E-77 1.069 1.175 1.230 1.232 1.344		E73	0.760	0.853	0.914	0.966	1.080
E-76 0.970 1.274 1.142 1.190 1.248 E-77 1.869 1.175 1.230 1.232 1.344		E-71	0.302	0.336	0.75-2-	1.000	1.062
E-77 1.069 1.175 1.270 1.232 1.344		E-75:	0,236	0.990	1.046	1.093	1.150
		E-76	0.970	1.074	1442	1.190	1.248
		-E-77	1.069	1.175	1.230	1.732	1.344
		1					
┠╶┆┈┆┈╎┈┆┈┆┈┆┈╎┈╎┈╏┈╏┈╏┈┩┈┩┈┦┈┦┈╏┈ ┼┈╂┈╏┈┈┈╵ ╵╏┈╏┈╏┈╏ ┈╏							

SUBJECT. ELEVATION SURVEY SECTION U-17 STATION 15615(to 16/15)

CTL/THOMPSON, INC.
CONSULTING GEOTECHNICAL
AND MATERIALS ENGINEERS

DATE

BY N C 1262 C STO J 2 PAGE 33 OF

, 0		_	/ /		
LATER LEBTE	108421188		, 1		
		,			
			, , ,		
	111	2	: 3	1	5
	0.563	0,502	0.533	0.550	0.534
E-6)		11 / .	(1/0	0.550	
	6.67	6.10		640	6.41
C 16:	0.544	0.536	0.136	0396	5.538
E-60	6.53	6.43	6.67	7.03	6.46
7.1	0.576	6571	0572	6.578	0.546
E-69	151			101	0.570
	6.11	6.35	6.26	6.77	6.35
6.0	0.536	0332	0.539	05=4	0.522
E-70	6.43	6.60	6.71	701	6.26
	2474	0.170	0.491	0.418	0.492
F-91	16		1/20	yeu	
	3,67	54.64	3-14		(90
E-72	0.500	0.500	6538	0.556	0.52/
	6.00	6.00	6.46	6.67	6.25
E-73	0.531	0.531	0,546	0559	0,546
L-15	6.37		1.55		· / . / !
		6.37		6.71	6.(3
E-74	0.525	6:571	0.580	0.591	o.m
	6.30	6.25	1.76	7.13	6.56
E-75	0.598	0.637	0584	0.629	0.522/
	7.18	7.64	7:01	7.55	6.86
	<u> </u>				<u> </u>
£-76	0.620	0.622		0.661	0.600
	7.44	7.46	7.32	7.97	1.20
F-7-7	0.681	0.674	0.658	0,544	0.562
	0.17	(2.33	7.66	7.01.	124
	73.00	74.31	74.31	75.45	72.04
			1		
		(4.3)			
			<u>-</u>		
	1-1-1-1		<u> </u>	-	
	 				
				_'	
					
			• • •	1111	

SUBJECT ELEVATION SURVEY
SECTION U-17
STATION ISEISS TO 16/15(

SBOLJG CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

DATE DATE OF DATE

	A	1 1	_	/	/ <u>A // W O O I P</u> AGE	
	1 lan	100/100/10	f-:-			· · · · · · · · · · · · · · · · · · ·
LATER	CONCRETE	14/67/601				
		. ! !	<u> </u>	1		
				1 :		1
				! ,		
		 	2	3	1	
				· · · · · · · · · · · · · · · · · · ·	11	
	Fala	2.186	770/	7.346	7.407	7 1/20-
 		4.106	0.085	₩ <u>_</u> : 2/6	1 - 10 /	4711
				1 1		
	E-68	1.477	2.677	2.139	2.193	2.278
1 '	L UU,		1	' ' '		
	- 1a	, , ,				الاحا
	E-69	1.719	1.5.17	1.919	1.979	7.048
				 -/ -/	- ''' '	
		7 7	1 100		1	-/-
<u>'</u>	E=/6	1.600	1.679	-1.763	1.220-	1.09
· · · · ·	 				,	,-
	F.71	1/2/2	1 /22	1.1.1.	1-2-0-	-1004
	L //	1.427	1.559	1.656	1.70 8	1.1/8
			İ			
	6.12	1.11	1/2/	-1.664	1.660 -	100-
	L	1.412	1.534	-1.609 -	1.666	1-1-6-0
				!!	11	
	-E-73-	1.472	1.573	1.640	1.700	1.762
' '		1.416	1.1.75	1.640	1.100	1.160
	-E:7J	1568	1.670	1.736	1.794	1.218
1		7,0,0,	71670	770	1 7-2 7	71-0/0
	c 76					
	E-75	1.6/2-	1.706	1.774	1.228	1.886
1 1	1	7.072	1.706		7,000	1000
	-E-16	1.092	1.794	-1.213	1.904	9.960
	_	, , , ,				•
, ,	_ 8-70	1-1-1	100	10-1	-1201	-7-11
	L 17	1.199	1.392	1.954	1.998	2.066
						
		1 1				
1						
						,
				-	,	
					, <u> </u>	
				- 		+ + + + + +
						
				İ		i ·

SUBJECT ELEVATION SURVEY
SECTION U-17
STATION KISSTATION / SILVEY

JOB NO DATE DATE BY NS GE SS OF DATE

	/	110	_	//		
LAYER CON	CLETT	18LCB				
	-;					
				!		
			Z	3	1	
	10	0717	0.701	0.685	0.622	0.698
E	-67	8.60	241	-8.72	3.18	8.38
	16	0.705	0.691	0.695-	0.633	0.694
- E	-63	346	8.29	8.22	8.70	8.73
	10	aiis	0.619	0.665	0.65	0.67
	67	796	779)	7.95	7.78	9.00
	.4	0.69%	066,	0,610	0.661	0.671
E	70	638	5.00	9.51	7.93	8.79
6	2	0.735	0.737	6.73V	0.718	0.727
	7/	922	6.21	8.78	9.62	8.72
		0.736	0.719	f	0.696	6.707
	72	8.93	3.65	2.54	8.35	2.43
- F	73	0.712-	0.720 Ta		0.734	6.732
	13	9.54	0.720	8.71	8.21	8-78-
	-77-	0.766	0.774	0.784	0.784	0.786
E	-74.	9.19	9.79	9.41	9.41	9.43
6	75			0.72	0.735	0.736
	12	371	2.69	3.74	2.62	8.23
	7	0.722				0.7/2
	-16	0.66		253		6.14
E	201	6.725	0717		0.716	0.722
	//	3.70	3.60	8.69	2.59	8.66
	+++	94.85	93.72	93.86	93.46	94.44
						
	1 .		1 1		1	
			8.55			
	+++					
	<u> </u>				<u> </u>	
	1 1 1					
	++-					
	+ + +					

SUBJECT ELEVATION SURVEY SECTION U-18 STATION 14/4/0 To 14/6 4/0

34 of 37 CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

LATER	508920	00			!	
7.7.						
		,	Z	3	4	5
	E-56	0.314	0.729	0.644	0.517	0. 138
	E-57	0,976	0.578	6.742	<u>c.642</u>	8.566
	E-55	1.004	3.945	0.344	v.7/8 -	0.660
	E-:59	1.660	0.976	0.910	6.797	0.710
	E-60	1.083	1.0.72-	0.925	0.8/1	0.736
	E-61	1.120	1.065	0.969	0,374	0.794
, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	-E-64	-1.12-7-	1.068	v.473	0.877	0.774
	E-65	1.033	1.633	6.932	0.224	6.757
	E-64	1.044	0.992	0.901	-0.79Y -	0.694
	E-65	8.780.	8,927	6.3.30	0.719	0.642
	E-66	0.889	0.3/4	6.76%	-0.651	0.561
i i !		1		1		
						1

SUBJECT ELEVATION SURVEY SECTION U-19 STATION 14/14/0 TO 14/6+4/0

CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

NO: _______ DATE.____

JOB NO: DATE.

BY A SCREEK AR D.J. PAGE 77 OF

		1		, ,		· · · · · · · · · · · · · · · · · · ·
LATER	LEGY CON	TORTE BJ.	E			
		 	2	31	4	5
	l la sata				1	
i	E-56	1.354	1.252	1.163	7.067	0.976
	! .					
 	E-57	1.474	1.366	1.208	1./95	1.//8
1 1	1 - 1		, ,			!
	E-58	1.560	7.446	1.353	1.274	1.182
1	2 30	7.4,60	7 . 7, 70	/// 5	,,,,	11100
		1:10	1//2	1.452	12/1	1.284
	E- (4	1.6:17	1.550	1-1-37-5-1	1.364	1.687
	6-1		1 < 15	1100	ine	
, !	E-60	1.658	1.548	1.458	1.360	1.276
<u> </u>						1
	E-61	1.635	1.574	1.490	1.400	1.308
i 4		,		,		
	E-62	1.675	1.872	1483	1.399	1.310
1 1		,,,,,	7.4 10	- , , , ,		7.570
	E-63	1.628	1.540	1.445	1.353	1.266
	E 63	7,02.0	/· U/ V	-/: - <i> </i> - - -	1.1.30	13546
	C-1.1	9 - 11/-		ii	-1-2-1	1
1	E-GY	1.614	1.505	1.422	-1.340	1.746
	E-65	1.566	1.452	1.364	1.272	1.137
			!	. ,		1
	E-66	7.471	1.360	1.274	-1,184	7.700
				!	1	:
ì		,				
						<u> </u>
 						; r
						i
					1	1

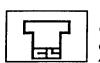
SECTION U-13 STATION 14/1-40 TO 146+40

38737 CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO. DATE BY NO SECOND OF PAGE OF

	40	<u> </u>		, 		
LATER	10000	CEGILLAR	<u></u>			<u> </u>
		 	' ; ;			
		 				1
		1		3	4	
	1 1 1	<u> </u>				- 60
	E-6	0.540	0.523	0519		0.538
		6.48	6.28	6.23	6.60	6.46
	10/2	0.543	0.453	0.546	0556	0.552
	E-57	6.53	3.96	6.55	6.67	6.62
	1/6	6.556	6.561	0.514	0556	6.522
ī,	E-53	6.67	661	113	6.60	6.26
	E-39	70	0.579	0572		0.574
		7.64)	6.39	6.50	6.80	6.89
	E-60	650	6.526	c.533	0.549	0.140
		6.04	6.31	6.10	6.(4	6.48
		0.565	6.509	0.821	4526	0.524
F	E-6/	6.75	6.11	6.25	6.31	6.29
			0.504	O.SIS	0521	
	1-6U	0.545	· / /			6.43
1 1		6.58	605		6.75	
	E-63	0.510	0.502	0.5/3	0.534	0,575
	- 40	6.46	6.02	6.16	6.41	6./8
	E-64	6,570	053	0.521	0346	0552
1	4 7 1	6.21	6.16	623	633	660
				0.574	0.583	
	E-65	7.03	6.30	6.11	6.69	0.545
- '		7,00				
 - ; ; - 	E-66		0.501	6.5/0-	0.53.3	0.534
1		6.95	(6.3)	6.12	6.40	6:41
		74.3	68.0	69 22	71.89	71.24
	[1	['		!	
			1	(6.4)	1	
						
				1		
				<u> </u>		
				_ _		
		$\left - \right - \left - \right $			7.04	
					100	
<u> </u>					 	

SECTION U-18 STATION 14/14/0 TO 1464/6


CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO. DATE BY. ASCRETE JOF PAGE 79 OF

			-/ B	v. ASGREWAL	RECOL PAGE	OF
14 14	10000	money	1	· · · · · · · · · · · · · · · · · · ·		
LATER CON	00,00	100/210162)			•	
						
	:		2			
			2	3	1	, 3
	E-50	1.992	1.908	1.251+	1.753	1.662
	E-57-	2.148	7.036	1.990	1.3.93	1.776
	E-58	2.204	7.114	2.052	1.956	1.872
	£-59	7.256	7./63	7.095	7.600	1.910
	E-60.	2264	2./78	2./08	Z .e/o+	1917
	£-(,)	7.300	2.206	2./26	2.034	1.940
	£.67-	† 	!			
			2.190	2122		1.935
1	E:63.	2.262	7./62	7.023	1.997	1.910
	E-67	4.232	2.134	2.064	1.971	1.884
	£-65	7.173	7.082	1.994	1.907	1.316
	E-66-	7.098	1.939	1.9/6	1.826	1.730
		- '				
	1					, ,
	1					
 						

SUBJECT. ELEVATION SURVEY SECTION U-18 STATION 14/14/0 TO 14/6/14/0

37 of 37 CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO ALAND. PAGE 30 OF ONLETT 14 0.638 0.688 0.636 0.656 0.692 E-56 5.26 8.30 3.23 7.66 0.676 0.678 9.14 8.39 8.07 834 0.644 0.638 6.69 0.670 0.694 7.73 8:2 8:23 0.613 0.636 0.613 0.667 0.616 7.31 7.72 7.63 7.42 7.51 0:650 0.650 0.630 0.641 E-66 7.5% 7.80 7.69 7.80 0.632 0.675 0.636 0.634 0.632 7.88 7:38 7.63 7.61 7.58 0618 0.634 O.GiS 0.624 0.61 240 7.61 7.50 0.614 0.634 0.622 5.638 0,639 7.67 7.61 7.6T 7.4% 0.638 0.619 0.663 1642 0.631 E-64 7.47 7.70 7.66 0.636 0.629 0.635 0607 0.630 7.62 7.28 7.56 7.56 2617 0.612 0.142 0.630. 752 7.70 7.70 7.56 186.39 85.43 84.03 8591 82.67 1 824 7.3

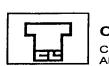
SUBJECT ELEVATION SURVEY

SECTION U-19

STATION 149495 TO 154, 95

330437 CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

			_	// _ / /	PAGI	Or
LATER.	50892-60	F				
		· !				
	-	- 7	Z	3	4	5
	E-45	3572	7. 499	3.390	7.283	3.184
!	E-46	3.296	3.246	3.14c	3.038	7.956
	E-47	3./09	3.056	B.933	2.850	7736
	E-:45	2.798-	7732	2.638	7.584	2.473
i 	E-49	2.381	2.311	2.261	2.215	2.1/2
	E-60	1.956	1.404	1.244	1.852	1.232
	E-51	1,597	1.645	1.630	1.615	1.578
- - -	E.Sa.	1.274.	1.306	j.310	\$.515	1.372
	E-23	0901	0.959	0.794	1.017	1.038
	E-57	9.504	0 .616	0.657	0 .696	0.752
	E-5	9 318-	0.422	4 .466	¢486	0.544
,	1				-	
!						
				-		
			- ,			ļ
	- 41-100			-		


SUBJECT ELEVATION SURVEY SECTION U-19 STATION 149+95 10154+95

JOB NO DATE DATE BY AJ GREAT ARDIN PAGE 22 OF

	,	/		BY // / ZECO	PAGE	
LAYER	LEAN CEN	CECTE BAS	Y111		<u> </u>	, , ,
1/40				1	1	
				1 1		
		1	2	3	4	. 5
	- 11/2					,
	E-45	4.099	4.000	3.913	3.820	3.711
1	. 1					
;	E-46	3.956	3.757	3.662	3.563:	3.476
i	E 46	-7-33-6-	1.1017		1,100.	
,	1 - 1		2/2/	1.		- / /
;	F-47	3.616	3 533	3.419	3,327	8240
						, , ,
, ,	E- 40	3.209	3.132	3.110	3.034	2764
		7.007	7.77	7.7,-6-	-7,0-7	2.767
1	F-:4	77 0 - 0				
	E-49	7.97.3	7.864	7:018	2.766	2.710
						·
	E-50-	7.552	2.520	2.481	2.443	2.403
	30					
i 1	-E-51				2 : 10	412
. :	L -31	2 191	2.176	2./62	2146	2/34
	,				, ,	
	E-52	1.916	1.624	1.230	1.946	1.360
¹						
	C.6		1.1.1			10-11
	E-13	1.432	1. 444	7.938	1.525	1.165
	E-54	1.039	1.123	1:165	1.234	1.284
1 : :		1 ! !			-	
	E-5	0.325	8.868	6.736	0983	1.048
	3	4.9.67	7.000	4.176	0100	1.0/8
		_				
	- : : :			,		
		_				
	<u> </u>					
		_			- - 	
						1111
	1 ' 1 1			· · · · ·		

SUBJECT. ELEVATION SURVEY
SECTION U-19
STATION 149495 to 154495

CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

LATER	LL 6.70 SC	B424061				i
7				1		, , ,
						1
		- 1	Z:	3	4	
	E-45	0527	0.101	C 523	0.52	0.527
	2 /3	6.70	6.01	6.23	6.33	6.32
	E-46	0560	0.511	0.522	1.550	0.520
	'	6.72	6.13	6.26	6.36	6.24
	E-1/7	0.507	6 447	6:49.1	0.470	6.504
		0.491	6.480	c.412	0.450	
	E- 4g	5.27	1.40	5.60	5.40	0.486
	E-49	0.547	2553	0.557	Oisi_	6598
		6.56	634	6.63	6.61	7.18
	E-50	0.596	0.616		0.591	6.576
		7.15	7.3%	(7.64)	7.09	6.94
	E-51	0.594	6.531	6.38	0.531	0.556
		6.542	0.518	0.520		0.538
	E-52.	6.50	6.22	6.24	6.30	6.46
	E-55	6.531	0.458	0.494	0.503	0,527
	4 55	6.37	5,2	5.93	6.10	6.3
	E-54	0.535	0.512		0.538	6532
		1.02	6.14	6.28	6.46	6.38
	E-55	0.507	0 146		0.502	0.504
				69.48	1030	6-0}
		71.82	66.53	41.70	68.73	70.41
			(b.3)			
<u>'</u>						
						-
						, , ,
	-					

SUBJECT. ELEVATION SURVEY SECTION U-19 STATION 149+95 TO 154+95

SCOR 37 CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOBNO: ______DATE _____ BY. AJGRENALLS JZ PAGE ZY OF____

		-/ ^E	BY. NO GLECUEL	PAGE_	<u>C</u> OF
The leader of the land of the	PRYMON	[
LAYER CONCRETE	THE THE TANK	<u> </u>		- 	
				,	
		l			
	 	2	3	1	3
E-45	5004	4.939	4.810	4.754	4.658
				,	
	4.765	4.702	4.623	1/5261	7.428
E-46	7-16-3	7. 10 2	12000	13.50	
	1.	, , ,	,		1. 11
E-47	4.527	4,461	4.372	4.262	4.174
E-48	4.253	4.160	4.028	4.004	3.932
L 10	7	,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
E-19	,	3.276	3.787	3.754	3.670
L //	3.970	3,246	5.707	7.1391	2.6 10
E-50	3.545	3.517.	3,494	3.455	3.422
				i	<u>'</u>
E-SI	3.176	-3.174	3.163	3.756	3.136
	7 . 7 . 0		100		
	2.775	2.790	2.306	2.812	2,922
E-62		<u> </u>		2.012	
	i	1.0	- / /	/+ 0 .	
E-53	2.392	2.418	7.460	2.433+	2.522
<i>E-54</i>	7.006	2.03/	7,146	2.190	2.240
					-
E-5		1000	1.900		
L 23	1.762	1.927	1.100	1.751	6.013
<u> </u>			i ' '		
		'			
					
			!		
		. :			
					
		i i			
		1 1			
					

SUBJECT. ELEVATION SURVEY SECTION U-19 STATION 149+957, 154+95

37°F37 CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

DATE DATE BY: NJ MACK, DOG JR. PAGE 75 OF

	1	1	- '	sr. <u> /</u>	PAGE	_ _Or
LATER	continere	VO LGB		1	<u> </u>	T
100	<u> </u>			 		
		1 1	Z	3	4	-5-
		1908	6.939	0.937	0.734	0.947
	E- 45	10.86	11.17	11.24	11.21	11.36
	,	16.66		· /		1/
	E-4/6	0.164	0.945	0.961	0.453	0.952
	2	10.91	11.34	11.53	1/.50	11.42
	- :/0!	6311	6.953	C.953	0.935	0.934
	E-47	10.93	1150	11.44	11.22	11.21
	[1					-
	E-1/0	0.969	0.975	0.779	· / !	0.968
,	L 10	11.63	NUN	11.74	11.64	11.62
	E- ja	0942	6.950	0.769	0.738	0.960
	L 11	130	11.78	11.63	11.86	11/4
				1.013		7
	E-50	0.473	0.997		1234	1.014
		1192	11:96	12.16	· · · · · · · · · · · · · · · · · · ·	(12.17)
	-E-51	6.985	0.998	1.006	1.0.10	10.02
		11.02	11.98	17.07-	12.12	12.92
		0.959	0.966	0.976	0.972	0962
	E-52	1151	11.59	11.71	11.66	11.59
	E-33	0.960	0.77.4	0.972	6.91.3	0.757
	, ,	11.57	11.69	11.66	11.16	11.48
	E-54	0.917	0.953	0.966	0.956	0.956
		11.00	11.44	11.59	11.17	11.47
	× 11	0.632	0.959	0.96-7	0.967	
	E-55	11.74	1,1,7	11.57	11.60	0.967
		17.6.17	1).11	11.5-7-1		11.60
		124.64	127.80	128.34	127.98	127.41
!						
	i		1 4			
1						
 						
	-!			1		
					1	
1 1			1 1 [1	' ;	

SUBJECT ELEVATION SURVEY
SECTION U-18
STATION 163+30 To 168+30

40 444 CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO DATE

BY AS GREW, SEE M. PAGE 36 OF

LATER	SUBGRA	DE			1	
						' /
		-7-	-2	3	4	5
	E-78	0.614	0.692	0.750	0.814	0.978
	E-79	0.706	0.786	0.332	0.909	0.984
	F-80	0.833	0.902	0.949	1.02/	0.096
	-E-:81	6.92.2	1.001	1.05-7	1.119	1.187
	F-92	1.018	1.090	1.160	1.236	1.292
	_E-23	1.105	1.199	1.751	1.322	1.388
	- E. G.J	1.198	1.290	1.342	1:410	1.477
	-E. ?	1.334	1.395	1.461	1.514	1.594
	E-66	1.390	1.486	1552	1.606	1.665
,	E-37	1.498	1.544	7.6/4	1.686	1.737
1 .	E-85	1.605	-1.72-3	1.778	1.829	1.865
						-

SUBJECT ELEVATION SURVEY SECTION U-70 STATION 113/30 TO 168130

CTL/THOMPSON, INC.
CONSULTING GEOTECHNICAL
AND MATERIALS ENGINEERS

JOB NO, DATE DATE BY ASSISTANCE 37 OF DATE

BY NO YEE () PAGE) OF							
LATER	for ten	CLETE BAS	8				
					- t		
	:				,	, ₋	
,	,		2	3	4	-	
	E-78	1.102	1.203	1.278	1.348	1.398	
	E-79:-	1.206	1.318	1.382	1.446	1.508	
	F-80-	7.314	1.414	1.409	-1.550	1.613	
	E-81	1.123	1.532.	1.596	1.652.	1.714	
	E-92	1.528	1.630	-1.695 -	1.748	1.910	
	E-83	1.622	1.728	1.793	1.3.19	1.914	
	E.84	7.71/	1.818	1.883	1.946	2.004	
	E-ES	1.320	1.919	1.992	7.052	7.106.	
	E-86	1.908	2.3/3	2.076	2.136	2.205	
· · · · · · · · · · · · · · · · · · ·	E-67	7.018	2/29 -	2./94	7.254	2.312	
	E-68	2.110	2.220	2.288	2.354	2.411	
• •		• • • •			– .,	-	
		1	1 ,				
	- 1 ;					<u>-</u> •	
					' -		
-						3.	

SUBJECT ELEVATION SURVEY SECTION U-7.0 STATION /63+30 TO/6:170

CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO DATE

BY MCRALLILLIA. PAGE 36 OF.

	1:0	<i></i>	,	/ /		
LATER	268 50 -	VBGRADE		1		1
	·	ļ		! •	<u>i</u> —	
			;	1 7 4		
			Z	3	4	- 5
	E-78	0.483	8.516	0.525	0.534	0.520
ļ		5.86-	6.19	634	6.41	6.2.4.
	E-79.	6.00	6.38	6.550	6.44	6.29
-	. E-60	0.481	0.512	0.540	6.529	0.517
			6.14	6.45	-6.35	6.20
	E-61	6.61	6.37	0.539	0.533	6.32
	E-82	0.510	6.48	0.535	0.5/2	0.5/8
	6.00	0.517	0.529	0.542	0.527	6.576
	E-83	1.20	6.35	6.50	6.32	6.31
	E. 8.4	05/3	6.34	8.541	0.570	0527
	- /	6.16	0.521	0531	0.538	05/L
	E-gj.	3.83	6.25	637	116	6.14
	E-86,	0.518-622	6.527	-6,29	0.53c	6.18
		0.520	0.545	/	6,168	0.575
,	E-E7	6.24	6.54	16.94	6.82	6.90
	- E-88		6.497	0.510	6.525	0.146
,		6.06	5.96	6.12	6.30	6.55
,	-	[06.47	(A.32	71.04	F0.34	69.9F
	-		/	6.3		- '-
	1		(0:5/		
- 		+		-		
		,			<u> </u>	
				-	1	
					·	:

SECTION U-18 STATION 163130 TO 163130

CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

	-/-		7	34 1 5 (K.) . A.	PAGE	<u>J</u> OF
LAJER	Conscience	PHEMES.		-		
		•				}
		.1-		3	4	. 5
	E-78	2.043	2.141	2.264	2.787	2.330
-	E-79	2.164	2.760	2.322	2.372	2.442
,	E-20	2.270	2.365	2.427	2.477	2.544
	£=5/	7.381	2.476	2.135	2.554	7.650
	E-32	2.474	2.570	2.678	7.682-	2.749
	633	2.573	2.64	Z.777	7.778	2840
	-F.G.Y	2.678	2.714	7.932	2.336	2.954
	Eis	2.302-	2.896	2957.	3.014	3.086
	-E-56:	2.868	2.957	3.020	3.080	3.152
	E-87	2.975	3.034	3.099	3.160	7.22/
	-E-SE	3.077	3.178	7.244	3.300	3.370
		-		-		
		-		~ - ~	-	•
					•	
		-			-	
						-

SECTION U-ZO
STATES 1/3+30 TO 1/3+30

CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

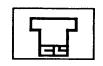
(3430 70 168430 JOB NO LATER CNICKTE Z 0433 0.926 0.932 0941 0.909 E-78 1/.18 11.29 11.20 10.91 0.926 0.958 0.942 0940 0.934 11.50 1/./1 11.28 11.30 11.2.1 0956 0.751 0,739 0.927 0.931 (H.47 11.47 -11.26 11.12 0.753 0.744 0.932 0.939 0.936 -E-3/ 11.27 11.50 11.33 11.15 11.23 0.946 0.940 c,733 0.934 0.439 --11.35 11.21 11.28 11.20 11.27 6.951 0.936 0.734 0,929 6.926 11.23 71.21 11.11 1/.15 [[.4] 0.956 0.749 0.967 0.950 0.946 11.39 11.60 11.47 11.3(11.40 0.96 0.962 0.992 0.977 0.980 11.58 11.54 11.72 11.76 0.744 0.960 0.74 6.944 6.747 11.52 11.36 11.33 71.33 -11.33 0.957 0.705 0.906 6.909 1.905 11.45 10.26 10.86 70.91 10.97 0.953 0.956 0.959 0-967 6.946 11.50 -11.47 -11.60 11.35 11.5 123.96 124.11 124.50 124.63 123.12

SUBJECT ELEVATION SURVEY
SECTION U-21

CTL/THOMPSON, INC.
CONSULTING GEOTECHNICAL
AND MATERIALS ENGINEERS

LATER	SUBGRAD	DE	,			
-			1 .			
		1	2	3		
	E-100	0.656	0.802	0.946	1.029	1.037
	E-101	0.754	0.974	0.908	-0.986	1.054
	E-low	0.860	0.972	1.861	1.160	1.180
1	E-103	0.966	6.077	1.183	1.257	1.331
	E-104	1.765	1.255	1.282	1.386	1.450
	E-165	0.923	1.160	1.264	1.354	1.398 -
	E-106	1.673	1.279	1.400	1.692	1.687
	E-167	1.105	1.303	1.406	1.606	1.670
	E-100	1332	1.407	1.546	1.654	1.730
	E-/07	-1.496	1.656	1.759	-1.241	1.986
1	E-1/0	1.570	1.744	1.852	1.969	2.070
- +		-				
						'
	1 1			1 - 1	. '	.1 }

SECTION U-21 STATION 185495 TO 190+95



76 95 CTL/THOMPSON, INC.
CONSULTING GEOTECHNICAL
AND MATERIALS ENGINEERS

JOB NO DATE DATE BY B JCRES ARD JR PAGE 49 OF

/0.40	BORK (m) (8	<u> </u>			1
LAJER	BASE CO	108.3 E.			-	i - ; +
						-
		1	2	3	4	
	E-100	1.003	1.104	1.190	1.256	1.293
	E-101	1.106	1.206	1.289	-1.363	1.403
	E-hz	1.212	1.294	1.363	1.431	1.564
10 T 17 T . AMERICAN	E- 103	1.290	-j.378	1.447	1.544	1.628
	E-ki	1.400	1.496	1.577	1.61/2	1.696
	E-b3	1.452	1.555	1.592	1.668	1.739
~	-E-106	1.630	1.72.4	1.774	1.834	1.915
	E: 107	1.758	1.4.19	1.912	1.463	2.052
····	E-108	1.631	1.909	1.970	1.025	7.879
	E-109	1.270	-2.002 -	2.592	2./38	2.216
1	E-1/0.	1015	2.142	2.22.2	7.282	2.374
			_	[
			-		•	
			 1			
		1 1			· · · · · · · · · · · · · · · · · · ·	1
			···			
		1	,	1		

SUBJECT ELEVATION SURVEY
SECTION U-11
STATION 19549510 190495

CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

				/ /		
LATER	1088 1050	89CD0E				
	1 1		-			/
	 					
	<u> </u>		Z	3	4:	- 5 +
	l	0.349	0302	0.244	0.227	0.256
	E-100	- 4.19	3.62	7.93	2.72	
		0352	8332	0.391	6.377	0.349
	E-101-	4.22	· /	4.57		4.19
1		0.350	3.98		4.52	f , , , , , , , , , , , , , , , , , , ,
	E-102		0.322	0.302	0321	0.324
	,	4.22	3.86	7.62	3.05	3.89
	E-103	0.124	0.301	0.264	0.297	0.297
	- 1-7	5.09	3.61	2.52	3.44	3.56
	E-10:4	0.135	0,731	0.295	0.256	0.246
		(1.62)	2.77	3.54	3.67	2.95
	F-105	0 529	0.395	6.328	6.314	0.341
	/- J-	6.35	1.74	3.94	3.77	4.09
÷ ~	E-106	0557	0.145	0.244	0.142	0.228
		6.63	5.34	3.53	1.70	2.74
	-E-107	0.653	0.546	0.496	0.362	0.362
	E 107-	7.2.1	6.55	5.95	4.34	4.58
	E-168	0.199	0.502	0.124	0.371	6.349
	2 / 6	6.00	6.62	5.69	4.45	4.19
	1:0-	6.344	0.346	0.323	0.237	0.230
	E-109	4.13	14.15	3.88	306	2.76
	E-/10.	0:455	0.398	4	0.313	0.301
	L 110.	- 5.46	4.78	4.44	3.76	3.65
		55.80	49.42		39.18	39.67
		25.80	11.12	44.01	31.10	21.01
	<u> </u>					
						_
· ·			(4.1)			•
						-
s 7	, ,	1		1		
	- - - - - - - -	!	1			•
			1			
1		! . !			1	_ _

SUBJECT. ELEVATION SURVEY SECTION U-21 STATION 19519578 190195

CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO: DATE DATE OF OF

/Anm	GELM ENGLE	APPACOT V	FEATED BAS			
	,		1			
		7.	2	3	4	
	E-100	1.285	1.412	1.492	1.553	1.650
	E-101	1397	1.512	1.615	1.65-6	1.728
	E-102	7.494	1.660	1.716	1.160	1.834
	E-103	1582	1.635	1.797	1.549	1.936
	E-104	1.754	1.850	1.894	1.927	1.990
	E-105	1.792	1.903	1.953	2.002	2.087
	-E-106	1952	7.030	2.103	2.153	2.229
<u>.</u>	-E-167	2.010	Z.161	2.230	2.272	2.358
	E-108	7.113	7703	2292	2.306	2.373
	_£-/09	7.121	1.282	2.380	2.412	2.486
1	E-1/0	2291	2.470	2.556	2.591	7.656
						_ '
:						
,						
	,					

490051

SUBJECT: ELEVATION SURVEY SECTION U-21 STATION 125+95 TO 190+95

CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO DATE

BY ASGREE SROVE PAGE ST OF

LATER F.	ATB 50 5	956			1	
		1	'			/
			1 1	+		1
			2	, 3	4	
	E-100	0.280	0.308	0.302	0.797	0357
		7176	3.70	3.62	3.56	7.28
	E-101-	3.49	0.306	3.91	3.52	3.90
	E-low	0.182	0.766	0.353	0.729	0.330
	·	3.38	4.39	1.24	3.95	396
	E-103-	0.292	0.307	4.20	0.365	0.308
			3.68		3.66	3.70
	E-104	4.25	0.364_	3.80	8.205	3.53
	6-1-/	6340	0353	0.361		0.348
	E-105	4.08	4.24	9.33	4.01	4.18
	E-106	0322	0.306	6.329		0.314
		3.86	3,67	3.95	3.83	3,77
	E-107	0.752	3.74	0.3/8	3.65	0.306
	E-108	0250	0.299	0.312	0.201	0.294
		3.44	759	3.86	-/-3.37	3.53
	E-109-	0.281	0.220	0.298		0270
		3.37	3,36	3.58	3.29	3.24
	E-110.	6.266	0318	6.334	6.309_	0.282
		38.94	42.35	43.32		41.14
		!			and makes the second size of the second special specia	
	-	j	(27)			,
			37		! !	
			1 1			
	1					
-				1 1		
	' 1	1		ţ	i	ļ ,

SUBJECT ELEVATION SURVEY
SECTION U-21
STATION 185+95 TO 190+95

CTL/THOMPSON, INC.
CONSULTING GEOTECHNICAL
AND MATERIALS ENGINEERS

		8	or Asgrange	RISR_ PAGE	<u> SンOF</u>
			, , , , ,		
LAJER CONTRET	E PAVEMENT	 			
		† · · · · · · · · · · · · · · · · · · ·		1	
					1
	1	1	3	4	
	08		1		
E-10	00	1155	12/9		
	7/21	7719	7777	2.327	2,400
E-101	2.126	2.201	2,6,6		
, ,		1		,	
E-102	2.254	7.33	2.393	Z.456 -	2.539
i					
	1 200.	7.1.	2/10	7/0	12/17
E 163	2.331	2.406	2.469	-6.8-30 -	-2.6/3
			i i		
E-104	2.422	2.199	2.562	7.622	2.701
	2702				
	-	7 /0	2001		- 3 3
	7.505	-6.592	2.664	-6.77.2 -	Z-809
E-106	2.634	2.735	2,798	2.852	2.936
		2.755	- , , ,		
		/			266
E- /6	7 2.794 -	-2.894	2.944	3.001	3.080
1	1 1		i		
	2.887	Z.970	3.028	3081	3.164
		1			7,70
	7 2.969	7 /-	3 //8	3.160	3.248
- - E - /c	7 6.967	2,052	-3.//-8	- 5. 166	>
E-1/0	3.117	3.701	3.259	3.312	3.384
	· · · · · · · · · · · · · · · · · · ·				
	1	-			
	_				
	+	·			
	+	;	-		
	+				1
	+				
		L			1

SUBJECT. ELEVATION SURVEY
SECTION U-ZI
STATION 185+95 to 190+95

CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

		t	BY NO YCELUZAR	PAGE	55 OF
	00		/ /		
LATER CONC. 1	O PATE				1
					
					
		2	23	·	
		I I	ر ن	+ 7	,
] / <u>/</u>			
E-100	<u></u>				
				1000	
F-1.1	6.729	0.697	0.657	0.671	0.680
E-101	8.75	8.36	7.88	8.05	8.16
	12/1	1	1	0.696	T
E-lez	0.76	0678	0.677	· / .	0.705
	9.12	8.10	812	3.55	246
	0.749	0.721	0,672	0681	0.671
-E-1c3		i / /	il /	8.17	
	299	8.65	8.06	8.11	9.iv
E-10:1	0.668	0.6:19	0.668	0.698	0.711_
L 107	3.02	7.79	8.02	834	00
				·	8.53
E-105	0.713	0.684	0.711	6.720	5.722
	8.56	8.21	9.53	8.61	8.66
	1/2	6.705	0.695		0.707
E-106	0.687	· /	1	0.699	
	8.18	8:16	834	8.39	8.48
	0.794	0.686	0.714	0.729	0522
- E-107	7.41	8.23	8.57		
		0.65		375	8.66
E-lug	0.769	0.762	0.736	0.775	0.791
	9.23	9.14	8.0,3	9.30	9.49.
					
E-109-	0.248	0.770	0.738	0.754	0.762
	(10.18)	9.24	8.36	9.05	9.14
6 11.	0.326	0.731	6.703	0.721	
E-110	0.00	I - 1			0.728
	9.91	3.77	344	3.65	3.74
	90.35	84.95	83.65	85 69	86.44
	10100	,		-	ΔΨ. ; ,
	1				
				;	· · · .
	_ +		<i></i>		
<u></u>		L <i>A</i>	8.4		
		<u> </u>	<u>U</u>	- 1	
1	1				
		, 1			1
					1
	1			· +	
	- - 				

SUBJECT ELEVATION SURVEY SECTION U-22 STATION 192185 TO 197185

CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

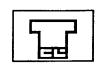
JOB NO DATE

BY / SCREELEN OF PAGE 3 OF

	_			/ /		
LATER	SUBGRAU	6			-	
			2	3	4	-5
	E-111	1.087	1.227	1.235	1.242.	1.304
, -	E-1/2-	1.124	1.179	1.224	1.794	_1.376
	E-/13	1.172	1.248	1.300	1.376	1.402
	E-114	0.967	1.123	1.166	1.234	1.340
	- E-115	1.094	1.170	1.789	1.779	1.272
	E-116	1.706	1.286	1.317	1.339	1.340 _
	E-117	1.234	1.301	1.294	1.326	1.398
-	E:1/8	_/.141_	1.232	1311	1.378	1.426_
·	E-1/9-	-1.22.t	1.304	1.307	1.352	1.392
	_£-170	-i-133	i. 1 87	1.304	1.312.	1.366
	E-KI	1.178	1.2.16	1.286	1.356	1.420
,		,				
,			,			
1	1		[
		-	1	·		

SUBJECT ELEVATION SURVEY
SECTION U-12
STATION 192+85 TO 197+85

CTL/THOMPSON, INC.

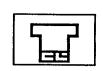

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO. DATE

BY ASGURZAGROUR PAGE Y OF

LAJER	BASE Cor	1856			-	i
				3	4	
	E-111-	1.465	5.526	0.588	\$.67	B.668
	E-112	1.504	1.543	4.605	1.654	1.741
	E-113	1.528	1.583	1.654	1.693	1.744
	E-114	1.554.	1.594	1.648	1.691	1.770-
-	E-115	7.5/3	-1.555	1.624	1.676	1.744
	E-116	-1.440	4.483	1.586	1.622	1.691
-	E-1/7	1.479	1536	1.587	1.632	1.708
- •	E-198.	-1.469	1.520	1.590	1.641	1.732
	E-ilq	1.490	1.512-	1.562-	1.616	1.134
	£-170	1.484	1.512	1.563	1.633	1.722
	E-121	1.480	1.526	1.563	1.627	1.712
				 	-	

SUBJECT ELEVATION SURVEY SECTION U-22 STATION 192495 TO 197485



CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

	POCK 150	COCALIC				
LAYER	8956 TO	105901112		-		/
, ,	,	.1		3	1	5
1	E-111	0378	0.299	6.353	0.379	0.764
	E - 111	4.54	3.59	4.9.4	4.55	437
	-E-112	0.380	0364	0.391	0.360	0.365
	EIIV	4.56	4.37	4.57	4.32	4.38
	E-113	0.356	0.335	0.354	0.367	0342
		-4-27	1.00	4.25	0.457	04/30
•	E-114	0.58, 7.04	3.65	5.78	5.48	5.16
	6-11.	0.119	0.385	0.335	0337	0.172
	E-115	5.03	1/162	4.02	4.4	5.66
	E-116	0.234	0.197	0.769	0.233	0.351
	-L 116	2.31	(2.36)	3.23	3.40	4.21
	- E-117	0.245	0.229	0.293	0.306	0.310
		2.94	2.75	3.52	3.67	3.72
	E-118	0328	0.288	3.35	0.763	0.306
	C 110	0.259	0.20%	0 735	0.264	6.292
	E-119	3.11	150	3.06	3.17-	3.50
	F lo	0.346	6.325	6.259	0.321	6.362
: :	E-120	4.15	3.90	3.11	3.85	4.34
· · · · · · · · · · · · · · · · · · ·	E-121	0.302-	0.710	0.282	6.271	0.292
· · · · · · · · · · · · · · · · · · ·	,	3.62	3.72	3.38	3.75	3.50
1		46.01	40.94	42.51	43.29	46.61
			1	· .		1
					-	
·			4.0			
1	f t					
		- 1				
··						
-				-		
	!					1

SUBJECT. ELEVATION SURVEY SECTION 0-72 STATION 192195 TO 197195

CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

LATER	PERMERBO	& ASPABLE	TRATKO B	ASE		
	,					
	, ,	7:	ا	3	. 4	
	E-111	1.826	1.916	1.972	2.018	2.083
	E-1/2.	1.9.43	1.914	1.963	2.015	2.088
	E-1/3	1.339	1.940	1.996	7.045	2.112
	E-114	1.914	1.966	7.009	2.052	2.116
	E-115	7.897	1.944	1.978	7 823	7.684
1	6-116	1.857	1.890	1.944	1.994	7.069
	-E-117	1.886	1.932	1.974	2.016	7.832
 I	E-/18	1.956	1.920	1.920	2.014	7.035
	E-119	7.352	1.901	1.947	1.990	2.059
	£-/20	1.864	1.905	1.948	1.994	7.078
	E-121	1.552	1.698	1.955	1.992	2.874
						* ***
, 1	1					
				, ,		1
						'

SUBJECT ELEVATION SURVEY
SECTION U-ZZ
STATION 192/25 TO 197/95

CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

			_	/ /		
LATER	PATE TO	B136		-		
	!					
			2	3	4	3
	E-111-	0.36/	6.396	0.304	0.397	0.415
		4.33	4.68	4.61	4.76	4.98
	E-1/2	0.339	0.371	0.763	0.361	0.347
	L-11C	4.07	4.45	4.36	4.33	4.16
·	E-113	0.361	0.350	0.342	0.352	6.368
	'/)	4.33	4.28	4.10	1.22	4.42
	E-/14	0.360	0370	0.761	0.361	0.346
	L ///-	4.32	4.46	4.33	4.33	4.15
	E-118	0.324	0.799	6.354	0347	0.340
		4.61	1.67	4.25	4.16	4.08
	E-1/6	0.417	0.107	0.358	0.372	6.325
		(00)	4.88	1.30	4.46	3.90
	E-117	0.407	6.402	6.327	0.304	0.374
- 1	_ ,, ,	4.88	4.32	4.64	4.61	4.49
1	E-1/0	0.387	0.103	0.380	0373	0.353
	L 1/25	4.64	1.90	936	4.48	4.24
	E-1/9	0372	8.389	0.305	0.374	0.375
		4.46	4.67	4.62	- 4.49	7.50
,	E-120	0,38.6	0.393	0.395	0.361	0.356
	L /20	9.56	4.72	4.62	4.33	4.27
	E-121	0372	8.372	0.360	0.365	0.362
		4.46	4.46	- 4.64	433	4.34
		49.66	50.99	49.03	48 55	48.33
		 				
				-	 ,	
-	1 		(4.5)			
			:			
				1		
1	,		' ' '			

SUBJECT ELEVATION SURVEY
SECTION U-22STATION 19218/10/97/88

GS ON 66 CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO _____ DATE ____

	/		- B	Υ	PAGE SE OF			
late last	1	201/20 - 1	<i>/</i>					
LAJER Conte	126/6:1	7000		-		, /		
						' - · · · · · · · · · · · · · · · · · ·		
			- 2	3	4	{-		
E		2.545	7600	2.659	2.710	2.777		
- E	-1/2-	7.57Y	2.626	2.686	2.735	2.794		
	-113	2.602	2.650	-2.707	2.756	7.218		
E	/// -	2.597	7.CSY	2.712	2.763	2.824		
	-115	7.588	2.6.16	-2.706	2.762	2.816		
	-116	2.565	2.676	2.680	2734	2.795		
E	-117	2572	2.624	2.624	7.738	2.793		
E	-//6	2.562	-2.614 -	- 2686 -	2.782	2.791		
E	-1/9	2.154	2.609	2.667	2.722	Z.796		
E	-120	2.563	2.622	2.680	2.734	2.794		
E	-121	7.562	7.616	- 2.676	2.732	2.793		
			-					
	- 1							
					~	;		

SUBJECT ELEVATION SURVEY
SECTION U-ZZ
STATION 192195 TO 197+95

CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

COSCROTE 0.692 0.69 0.627 0.694 0.719 8.63 821 B.2-4 8.30 8.33 0.713 0.706 0712 0731 0.720 E-1/2 8.77 3.54 3.64 3.60 8.47 0.710 0.713 0.706 0.711 6.711 E-113 3.56 8-52 8.3 8.47 0.683 0.688 0.703 0.708 6.711 3.20 8.26 8.44 8.53 8.50 0.732 0.391 0.702 0.728 6.739 8.29 3.74 5.42 3.57 8.78 0.736 0.738 0.726 0.768 0.740 E-116-3.93 8.38 3.50 8.23 8.71 E-117 0.722 6.716 0.692 0.711 0.710 0.19 8.30 8.53 8.52 3.66 0.706 0.706 0.694 0.710 6.718 E://g 8.47 3.52 3.33 8.47 8,62 6.720 0.763 0.732 E-119 0.702 0.727 2:0 8.64 8.72 0.701 0.732 0.740 0.716 0.717 E-120 8.15 9.38 8.59 6.78 3.60 6.719 0.715 0.721 0.740 0.710 3.63 352 3.62 95.57 93.40 9313 794.51 94.20SUBJECT ELEVATION SURVEY SECTION U-23 STATION 199190 to 204190

CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO		DATE	/	
BY AJGA	nelles	PAGE	60	_OF

	, .			/ /		
LAJER	Subgla	E			-	
				• - •		<u> </u>
				3	1	5
-	E-122	0.651	0.707	0,319	-0.925	1.003
	E-123	1.034	1.098	1.152	_1.181	1.281
	E-/24	1.600	1.660	1.713	1.782	1.306
-	E-125	2.016	2.103	2.176	2.293	2.394
	E-126	2.422	2.506	2.594	7.699	2.765
	E-127	3.147	3.725	3.264	3.314	3.392
	E-128	3.794	3.872	3.97.0	4.010	4.095
	E-129.	4.53.7	14.648	4.700	4.773	4.520
-	E-130	5.252	5.332	5370	5.424	5.488
	£-/3/	-5.946-	_6,478	6.109	6.156	6.722
	E-132	-6.642	6.722	6.770	6.988	6.892
				!		
				-		-
				-		
	<u> </u>	<u></u>				

38 of 43

SUBJECT. ELEVATION SURVEY
SECTION U-23
STATION 199490 TO 204490

CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

LATER	Base los	ese !				1 , 1
,	1	,				
			- 2	3	1	
	E-122	1.030	1.080	1.142	1.202	1.766
	E-123	1.431	1.487	1.549	1.607	1.678
	E-124	1.847	1.9.18	-j.494 -	2.036	2.106
	E-125	2.378	2.439	7.506	7.563	7.639
	E-126	7,978	3.030	3.102	3.163	3.242
	E-127	3.611	3.660	3.728	3,808	3.872
	E.123	4.262	4.333	4.416	4.484	4.554
	E:129	4.976	5.019	5.276	5.156	5.234
	E-130	-5.647-	5.686	5.754	5.822	5.892
	E-/31	6.394	6.442	-6.508	6.556	6.63V
	E-132	7.846	7.099	7.174	7.211	7.281
;		1	1 1			
					· · ·	
1				1		
						1

SUBJECT ELEVATION SURVEY
SECTION U-23
STATION 199490 TO 204496

CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

BY: NS CREENCE PAGE 62 OF

					_	
LATER	895E 103	ws 4100E				1
		ļ	<u> </u>	·		
	<u> </u>					
 		<u> </u>	-2	3	4	
 		1226			}	3
'	E-/22	0.319	0.373	0.323	0.777	0.263
	1	1.33	4.45	7.88	3.32	3.16
	E-123	0.397	0.389	0.397	0.126	6.397
	L 765	4.76	4.67	4.76	5.11	4.76
	E-124	0.217	0.258	0.781	0.254	0300
	L: /L7	2.76	3.10	3:37	3.05	3.60
		0.302	0:336	0.370	0.270	6.245
ļ	E-hs	4.34	4.63	3.96	3.24	7.94
					<u> </u>	
	F-126	0.556	0.524	0.508	0.464	0.477
		(6.67)	6.29-		5.57	1.72
	E-127	0.469	0.435	0.464	0.494	0.480
	2 ,0,	5.57	5.72	5.57	5.93	5.76
	E-128	0.468	0.461	0:196	0.174	0.459
		5.62	5.53-	595	5.69	5.51
	i.a	0.389	6.771	0.336	0383	0:414
	E-129	4.67	4.45	1.63	4.60	4.97
	C 120	0.289		6.3.94		
	E-Bo		4.25		6.398	6.404
	ı	7.67		4.61	4.78	4.95
	E-/31	0.445	6.361	'/	0.400	0.410
		5.38	4.37	4.79	1.60	4.92
	E-132	0.404	0.377	8.164	6.353	6.369
		4.85	4.55	4.45	4.24	4.67-
		54.04	50.91	53.07	5v.33	50.86
				<u> </u>	=	
1			(12)			
l			4.2			
			1		<u>-</u> 1	1
	_ :			l-		
						1
 						
					, -	
				- ' 		''

SECTION U-23 STATION 199+90 TO 204+90

CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO. DATE.

BY. NJ GREWLARD 42 PAGE 63 OF

LATER	PERMUSEE	PSPARET IN	19160 3836	1		
		1			1	
		.,	2	3	4	-5
		1392		1.496	1.548	1.672
	E-123	1.796	1.850	1.689	1.944	2.024
	E-124	2.199	2.282	2.346:	7.390	2.452
	E-125	2.735	2.812	-2.263	2.930.	3 .818
	E-126	3.722	3.39.8	3.448	3.498	3.593
	£-/27	3.956	4.075	4.090	4.182	4.243
	E-12E	4.629	4.668	-4.739	4.224	4.908
	E-129	5.327	5.794	5.462	5.522	5.598
	E-130	5.478	6.546	6.128	6.188	6.750
	- E-131	6.661	6.739	-6.807	6.663	6.950
	E-Br	7.343	7.407	9.462	7.531	7.615
			-			
				1		
				1	1 1	
			- ; ;			

SUBJECT. ELEVATION SURVEY SECTION U-23 STATION 199+90 TO 204+90

CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

	22-0			, ,		
LATER	1978 10	ASE				
	1		<u> </u>			
			1			
		11	2	3 +	4	
	E-lor	0.362	0.370	0.354	0.346	0.356
1		4.34	4.44	4.25	4.15	4.27
-	E-/23	0.365	0.363	6340	0737	0.346
	- E / L3	4.38	4.76	4.08	4.04	4.15
	F-/24	6.352	0.364	0.352	0.354	0.376
		472	4.37	4.22	9.25	4.51
	E= /25	0360	0.373	036	0.362	6379
	-E- 103	1.32	4.48	4.34	4.34	455
1 1 '	E-/26	0.344	0358	0.346	0.335	0.351
		4.13	4.30	4.15	4.02	4.21
	E-ka	6345	0.85	0.362	0344	0.371
		9.14	4.38	4.34	4.13	4.45
	E-128	0.367	0.335	0.323	0.340	0.354
* ** **** -		-14.40	4.07	3.88	4.08	4.25-
An orbital Mate. At most rate way.	E-129	0.351	0.375	0.376	0.366	0.364
		7.21	1.50	4.51	4.39	437
Service of the service of	E-130	6.537	0.360	6.374	0.364	0.358
		4.04	132	4.49	4.39-	4.30
	E-131	0.267	0.197	0.299	0.307	0.3/8
		3.20	3.56	3.59	3.69	3.82
	E-BV	0.297	0.303	6.288	0320	0.334
		3.56	3.78	3.16	3.94	401-
		44.94	46.43	45.31	4531	46.89
		1			- 1	
	+			,		
1 1				(4,2)		1
1 :						
1 1 1	i i		1 1			i i
	1					- 1 1
				, +		
	<u></u>				, ,	, ,

SUBJECT ELEVATION SURVEY
SECTION U-13
STATION 199+90 TO ZOVI+90

CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO. DATE

BY. BARRENGE ARONG. PAGE 65 OF.

				BY. 7	PAGE	OF
LATER	CONCRET	E falame	Jo			
				3	- 4	
		i s	2.122	2.486	7.536	2.602
	E-123	2.751	7.204	2317	2.917	2.994
	E-124	3.205	3.266	3.323	3.380	3.158
' - !	E-125	3,722.	3.780	3.842	-3.896	3.970
	ENEL	4.328	4.397	4.452	4.502	4.570
	E-127	4.947	5.0/2	·5.076.	5.12.3	5.194
	E-/28	5.620	5.676	5.747	5.790	5.270
	E-129	6.239	6.343	6408	6.460	6.536
- ' '	E-130	6 959	7.012-	7.078	7.125	7.200
		7.625	7.7.40	7.802	7.860	7.920
	E-/32	3.356	9.407	-9.463	8514	8.572
_		- '				
	1	1	'		- 1	
				1 - 1 - 1		

SECTION U-23 STATION 199+90+204+90

430x43 CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO: DATE BY. AS CENTRAL PAGE 66 OF

			_	BY. NIGHER	ALIN PAGE	66 of
LATER	CONCRETE	10 PATE	7			
7.7.				 		
	, ,		-2	3		
		1911	0.972	0.990	10000	6976
	E-/22	0.964	11.66	11.83	0.763	0.930
		0.955	0954		6000	
 	E-123	11.46	11.45	0.963	6.773	0.970
1 ,		1006	0.994	0.977	0.790	11.64
	E-RY	12.67	11.81	11.77	11.98	0.976
		6.984	0.968			11.71
	E-/25-	11.81	11.62	0.974	0.966	0.952
	6 41	1.006	1.003	1004	1.004	0.977
	E-126	12.07	12.09			
		0.991	0.937	1205	12.01	11.72
	E-127	11.89	1/24	0.986	0.971	0.951
	6 100	0.991	1003	1003		11.41
	£-128	11.89	12.10		0.966	0.762
		0.962	0.75-4	12.10	0,938	
	E-129.	11.54	11.45	0.996	11.26	6.939
	Cilar	0:781	0.3/6			0:360
, , ,	E-36	11.77	-1159	11.40	11.24	-11.40
		1024	100;			0.970
	E +31	(2.29)	12.01	11.94	11.96	11.64
	E-132		1600	1006	0,988	6.757
	レルレ	12.16	12	12.07	11.50	11.43
		130.52	12957	129.65	728.56	726.38
1						-
						-
 	1 1		(11.1)			* *
		+ 1		- 1		
	- +					
					·	
		+ + + +				

SUBJECT ELEVATION SURVEY SECTION U-74 STATION 169+90 to 174+90

CTL/THOMPSON, INC. CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO: DATE DATE DATE OF DATE

LATER	Suggeso	É				
				3	4	
			0310	0.411	0.557	0.629
	E-96.	1.632	1.884	1.994	2.100	2.214
	E-91	2.766	7.947	3.096	3.174	3.2/9
, , , , , , , , , , , , , , , , , , , ,	En	3.066	3.110	3.157	3.228	3.292
	E-13	3.072	3,174	3.19.6	3.703	3.254
	E-44	3.060	3.183	8.237	3.316 -	3.376
	- E. 95	3.478	3.614	3.682	3.686	3.779
	E-96	3.331	3.419	3.489	3.464	3.156
	E-97	2.174	2.303	2.373	2.222	2.501
	-E-73	0.402	0.488	a.606	6.638	0.764
	-E-19	0.132	0.236	0.337	0.519	0.666
				_ ' .		
	,					
	1				-	
			,			

SUBJECT ELEVATION SURVEY SECTION U-ZY STATION 169490 TO 174490

CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO DATE DATE OF OF

	1000			· · · · · · · · · · · · · · · · · · ·		
LAJER	BB6 Cer	IKS Q				
· · · ·		, t		1 1		
*			2	. 3	4	5
	E-89	0.552	6/20	0.706		0.243
			0.637		0.779	
	E-90	2.034	2.140	2.204-	2.772	2.332
	E-91	3.176	3.2.46	3.275	3.371	3.420
	E-92	3.346	3.448	3.542	3.592	3.593
	E-93	7.358	3.444	3.485	3.565	5,593.
	E-94	3.4,24	3.486	3.546	3,621	3.661
_	E.95	3.749	3.879	3.932	4.001	4.057
	E-16.	3.510	-3.63-7	3.691	3,765	3,882
	E-97	2.284	7.464	2.542	2.620	2.704
-	E-98	0.496	0.708	0.906	0.934	1.043
	E-99	0.240	0.162	0.574	8,722	0.857
-			1			
	1		·	-	1	
		· ;				
almony new de						
				,		
·			!			
	 					

SUBJECT ELEVATION SURVEY
SECTION U-ZY
STATION 169190 TO 174490

CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOBNO DATE DATE BY A SPECIAL PAGE 43 OF ____

	SE WORS E		_			
LATER	1916 10	SUBGILDE		1		- ^
	1	7		3	4	5
1	E-60	0.424	0327	0.795	0.222/	0.214
	20/	(5.09/	3.92	7.54	2.66	2.57
		0.402	0.256	0.210	0.172	0.113
	E-90	4.92	5.07	7.52	2.06	1.45
		0.410	0.299	0.179	6.198	0.701
·	E-9/-	9.92	3,50	7.15	2.33	241
	<u> </u>	0.340	0.338	0.385	0.361	3.30/
·	E-92-	4.00	4.06	4.60	4.37	3.61
!	E-93	0.296	0.270	0.739	0.357	0.339
	L. 13	3,43	3.24	3.47	4.28	4.07
· 		0.354	0.305	0.309	0.311	0.795
	E-Gil	4.25	3.66	3.71	7.73	3.42
	F.95	0.271	0.265	0150	0315	0.278
	E - 12	3.25	3.18	3.00	3.78	3.34
		0.179	6218	0.202-	0301	0.222
· -	E-91	215	2.62	2.42	3.61	3.38
1	c Ga	<u>o.110</u>	0.161	0.169	0338	6,263
1	-E-17.	1.32	1.93	2.03	1.06	2.44
<u> </u>		0.074	6.250	0.700	0.746	0.279
;	_E-16-	(1.13)	3.00	2.40	2.95	3.35
· · · · · · · · · · · · · · · · · · ·	c 39:	0.10		0.197	0.263	0.185
,	L-//-	1.32	0.176	2.24	2.44	2.27
			<u> </u>	32 1	-36·32·	32 Z3
1 1		3576	34. 38			·
1	-	·				
1			3.1	-	_ ',	
					!	•
						٠, ١
·						
						1
					·	

SUBJECT ELEVATION SURVEY SECTION U-24 STATION 169,490 TO 174,490

CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

LATER	PERMITS	it BPUbe,	TREBICC	BASE		
						/
				3	4	- 5
1	E-89	0.905	1.036	1.100	1.188	1.266
- '	E-90	2.402	2.523	2.588	7.652	2.73.4
	E-91	3.539	3.652	3.710	3.793	3.864
	E-Ir	3.719	3.834	3.896	3.969	4.042
	E-73	3.721	3.830	3.886	3.951	4.030
	E-94	3:757	3.892	3.946	4.011	4.094
-	-E-95	4.115	4.264	4.320	4.401	4.496
	- E-96	3.978	4.015	4.074	9.156	4.760-
	E-77	7.671	2.246	2.932	3.020	3.142
	E-18	0.892-	1.013	1.13.4	1.2.74	1.422
-+	-E-77	0.654	0.211	0.926	1.680	1.22.2
					:	
-						
					- -	
		- 1				- 1
		1		1		

SUBJECT ELEVATION SURVEY SECTION U- 24 STATION 169190 to 174490

CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO. DATE DATE

BY NJERGERSPACE PAGE OF OF

	Broth -	201.00	_	· - / - /		
LATER	MISTO	BISO Circle	ě			
						-/ -
<u> </u>						
				3		
1 1	- 00	1363	0345.393	0.394	0.409	0.423
	E-39	424	977	4.73	4.91-	5.08
t i		0.368	0.383	0.394	6.380	0.402
	-E-90-	4.42	1.60	4.61	4.56	4.82
		0.363	6406	6.435	0.412	0.444
-	E-91-	4.36	1.4.7	5.22		5.33
		6.373	6.386	 	6377	
	E-92	4.43	1.63	9.25	4.52	6.449
!		0.363	0.386	<u> </u>	0.386	0.437
	E-93		· /, :	0.401		· / ·
		4.36	4.63			5.24
	E-94	0.343	0.404			6.433
	/	4.12	4.65	4.50	4.68	5.20
	F-95	0.366	6.385	0.388	0.400	6.439
		4.39	4.62		1.80	5.07
	- E-46	0.363	0.378	0.393	0.391	0.428
, '	2 /6	1.4/2	4.54		1.69	5.14
	-E-77	0.387	6,382	0.390	0.0/00	0.438
1		4.64	4.53	1.63	1.00	- 5.26
	E-98	0.396	0.310	0.723	0.340	0.379
		3.8.4	(E.73)	3.94	1.08	4.55
1	E-93-	0.412	0349	0.352	0.358	0.371
		4.44	4.19	1.72	1.30	4.45
		48.21	49 95	50.5Z	50.91	55.73
1						
<u> </u>			4.6			
1-+			7.			
						- + 1
1						
	ī				*	
- 1 1						_ ! -
		1 4				
i	·					

SECTION U-24 STATION 169190 TO 174790

CTL/THOMPSON, INC.
CONSULTING GEOTECHNICAL
AND MATERIALS ENGINEERS

JOBNO DATE DATE DATE OF DATE

		20/1-	_	34 20 / 12236	PAGE	/ U OF
LATER	Contener	THOMENT				
						/
			2	3		-5-
	E-89	1.880	1.974	2.035	2.890	2.154
	E-90	3.376	3.469	3.526	3.580	3.645
	E-9/	4.489	4.595	4.646 -	4.698 -	4.768
	E-92	4.713.	4.813	4.874	4.930	4.991
	E-93	4.621	4.774	4.635	4.486	4.948
	E-94	4.619	4.794	4.812	4.902	4.963
- -	,	5,030	5.122	5.172	5.247	5.3/5
1	E:16	4.787	1253	4.956	5.013	5.076
l	E-97	3.630	3.754	3.834	3.9/0	3,987
	E-18	1.963	2./10	2.2.14	2.312	2.401
1	E-59	1.730	1900	2018	2.122	1.724
				<u></u>		
						1

SUBJECT ELEVATION SURVEY
SECTION U-ZY
STATION 169+90 to 174/490

CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO JOHN DATE PAGE 47 OF PAGE 47 OF

		PATR	·	,		
LATER	CENIC 10	BJD				
1	1	1	2	3	4	3
	E=89-	0.975	6.744	0.935	0.900	0.888
		11.70	11.33	-/1/.22	10.82	10.66
	F-90.	0.974	0.946	0.938	0.928	0.911
ı	L	11.69	11.35	11.21.		10.93
	E-9/-	0.950	0933	0.936	0.915	0.904
		11.40	11.20	11.23	10.98	10.25
1	E-92	0.994	0.979	0.978	0.761	6.949
	L / U.	1193	11.75	1/.74	11.53	11.39
1 1	E-93-	0.960	0944	0.949	0.735	0.918
<u> </u>		11.52	1/33	11.39	/1/.22	11.02
	7-94	0.941	0.902	0.966	0.091	0.669
		11.30	10:00	10.27	10.67	10.43
; -	F.95	0:715	0.958	0.852	0.8:16	0.219
		10.99	1030	10.72	10.15	9.83
	E.96	0.909	0.003	0.300	0.257	0.3.16
	L /6	10:21	10.48		10.25	(9.79)
	E-97	0.050	0.390	0.90	0.370	0.215
 		11.5	10.68	10.20	/	10.14
	E-10	7.077	1.092	1030	1038	0.979
1		1285	(13.10)	12.96	12.46	11.75
	E-19	1.076	1.039	1092	1;ohr	1.000
		12.91	13.67	13.10	12.50	12.07
1		128.702	125.41	125.39	122.45	118 81
-			(1.3)	 		
					- t	. 4
1 1			'			
1				}		1
			1			
	<u>, </u>	,	t t		1	'

SUBJECT ELEVATION SURVEY
SECTION U-5359
STATION 222100 TO 227 too

(/ %) / CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

JOB NO. DATE

BY JESSELY 12 OVE PAGE 7 OF

1000	100010	<u> </u>	T			
- LAYAL.	UBGRAD	8			-	

			Z	3	4	
	E-133	0.119	0.190	0.733	0323	-0.331
-	E-134	0.798	0.950	0.907_	0.974	1.028
	E-128	1-456	1.509	\$.558-	1.656	1.676
	E-1/4	2.325	2.098	2.160	7.248	2.279
	E-137	2.611-	7.665	2.711	2.795	1.338
1	-E-138	3.130	3.198	3.248	7.238	3.341
· ·	E-139	3.411	3.680	3.733	3.329	3.356
	E. 1/0	4236	4.096	4.152	4220	4.285
	E4	चं, उत्तर्	-4. Siz -	4.530	4.637	4.132
	E-1/7	4.731	4.788	4 868	4717	4.761
-	-E-143:	5,025	-(.i4) -	5.194	5 253	5,314
					!	
:					!	
, ,				- 1		
,						

SUBJECT ELEVATION SURVEY
SECTION U-53
STATION ELLEGO TO ELLEGO

CTL/THOMPSON, INC.

CONSULTING GEOTECHNICAL AND MATERIALS ENGINEERS

	////		y NO y CERVEY	12002 PAGE	<u> </u>
LATER CONCRET	EPhlone/				
					- 5
E-13	1.170	1.178	1.740	1.295	1.358
!	1.773	1.530	1.394	1946	-2.014 ,-
E-135	2.420	z:478+-	2.138	2.592	2.458
E-136	3 03 1-	-3.093-	3.16-6	3.208	3.277
-E-187	3.193	3.62	3.718	3 773	3.837
	4.103	4.157	2/.225	4.282	4.343
	4564	4.624	4.te3	4.744	4.203
- E-10's	5.310-	- 5.061/ _	-5,-43/	5.197	5.251 -
E-141	5.450	J. 454	5.507	5.32	5.642
-E-M2	5.752.	(100	6,000	5.734 _	5.792
E-143	6.547	6 396	6 163	6722	6.781
- 1					
				-	
					!
				-	

SUBJECT ELEVATION SURVEY
SECTION U-SEQ
STATION 2221 for

CTL/THOMPSON, INC.
CONSULTING GEOTECHNICAL
AND MATERIALS ENGINEERS

DATE DATE OF DATE

			BY RIJ CELL SSE JUL PAGE OF OF			
	- /- F.	Comba		· /		
LATER	con/c 'O	5050R SSE				1
		ļ				
						1
		·				
			2	3	1	· · · · · · · · · · · · · · · · · · ·
	E-133-	1001	0.993	1002	0.775	0.977
	E-133	12.01		12.02	3 2 7	1 /. 1
	1					11.72
	- E-134	6975	6.930	0.757	6972	6.926
		11.70	- 11.76	1/21	7 /1/.71	11.83
	- 1/	0.761	0.469	0.780		
	E-135	11.57	/ . '	if .	0.936	0.982
			 463		1/23	11.78
	(-:101	T.000	0.795	6.996	0.960	6.998
!	E=136	12.0	11.94	11.95	11.52	11.98
		6:62			<u> </u>	
	E-157-		0.906	1657	6983	0.999
		11.78	11-83	12.00	11.86	11.99
		0973	6.169	6977	6:194	1002
	E-150	11.68	11.51	11.72		. / 1
-						12.02
	E-139	0.953	0.944	0.783	0.315	6.947
			1133	11.40-		11.36
·		0.974	0.968	<u> </u>	0:167	
	E://	11.69		11.75		6.971
			11.62		- 11.60	11.65
	E-14,	6927	0.952	0.745	0.195	0.960
	- ///	11.54.	11.40		1134	11.12
			1.02 = -	12.00		
,	-E-142-	1021	1:20	10:17		1.03/
		12.25	12.24	12.20	12.20	12.37
	E-1/3	1.6.14	0.955	6.374	0501	0.967
	- 113	-12.25	11.41	11.69	11.60	-11.60
			=0-0-		77-7-1	
		12996	128.60	129.80	127.61	12982
						-'
				_		
1					-	
1				(11.3)	1	
						:
1	j ;					· ·
	Ī	ì	,			
			1		•-	
	,				1 1	į I
ı				, ,		-
			•			

APPENDIX D

SAMPLING AREAS & FIELD TESTS CONDUCTED

Table Test section location table showing construction and project stations.

Test Section	Location	Construction Stationing	Test Section Stationing	SHRP Reference Project Station
	Begin	101+40	0-50	
	Begin Monitoring	101+90	0+00	0+00
U16	End Monitoring	106+90	5+00	5+00
	End	107+55	5+65	5+65
	Begin	108+15	0-50	6+25
	Begin Monitoring	108+65	0+00	6+75
U13	End Monitoring	113+65	5+00	11+75
	End	114+30	5+65	12+40
	Begin	115+20	0-50	13+30
	Begin Monitoring	115+70	0+00	13+80
U14	End Monitoring	120+70	5+00	18+80
	End	121+35	5+65	19+45
	Begin	121+95	0-65	20+05
	Begin Monitoring	122+65	0+00	20+70
U15	End Monitoring	127+65	5+00	25+70
	End	128+10	5+50	26+20
	Begin	140+75	0-50	32+10
	Begin Monitoring	141+40	0+00	32+60
U18	End Monitoring	146+40	5+00	37+60
	End	140+90	5+65	38+25
	Begin	149+45	0-65	38+85
	Begin Monitoring	149+95	0+00	39+50
U19	End Monitoring	154+95	5+00	44+50
	End	155+60	5+50	45+00
	Begin	155+90	0-65	54+00
1	Begin Monitoring	156+55	0+00	54+65
U17	End Monitoring	161+55	5+00	59+65
	End	162+05	5+50	60+15
	Begin	162+65	0-65	60+75
	Begin Monitoring	163+30	0+00	61+40
U20	End Monitoring	168+30	5+00	66+40
	End	168+80	5+50	66+90

Table Test section location table showing construction and project stations (Contd.).

Test Section	Location	Construction Stationing	Test Section Stationing	SHRP Reference Project Station
U24	Begin	169+40	0-50	67+50
	Begin Monitoring	169+90	0+00	68+00 /
	End Monitoring	174+90	5+00	73+00
	End	175+55	5+65	73+65
U21	Begin	185+30	0-65	83+40
	Begin Monitoring	185+95	0+00	84+05
	End Monitoring	190+95	5+00	89+05
	End	191+45	5+50	89+55
U22	Begin	192+35	0-50	90+45
	Begin Monitoring	192+85	0+00	90+95
	End Monitoring	197+85	5+00	95+95
	End	198+50	5+65	96+60
U23	Begin	199+25	0-65	97+35
	Begin Monitoring	199+90	0+00	98+00
	End Monitoring	204+90	5+00	103+00
	End	205+40	5+50	103+50
59	Begin	221+10	0-90	119+20
	Begin Monitoring	222+00	0+00	120+10
	End Monitoring	227+00	5+00	125+10
	End	227+90	5+90	126+00

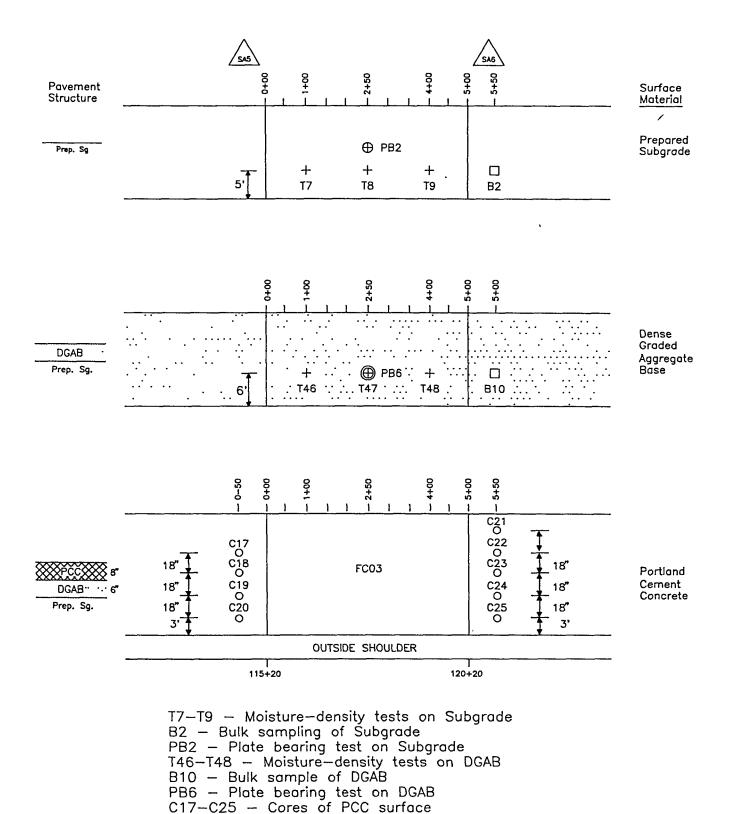
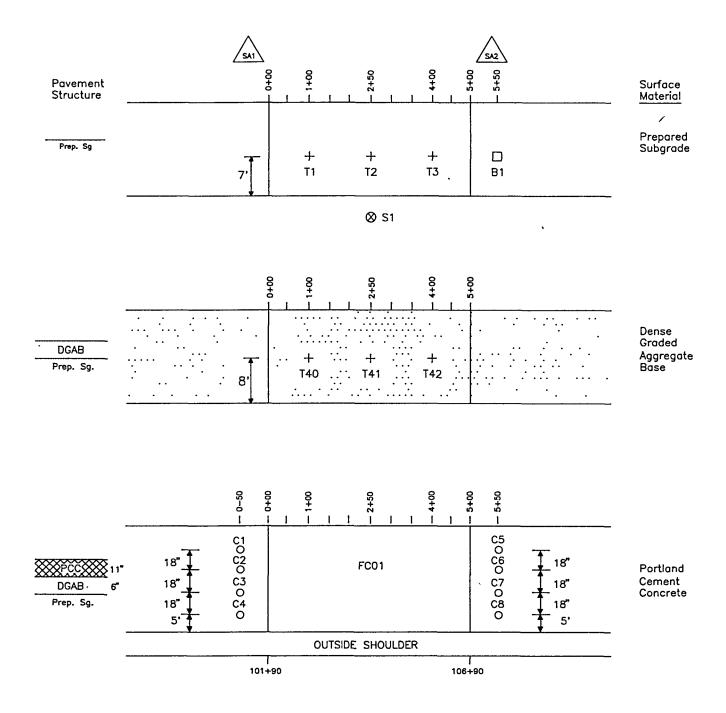



Figure ___. Sampling and test plan for test section U14.

FC03 - Bulk sampling of PCC for molded specimen

S1 - 20' shoulder probe T1-T3 - Moisture-density tests on Subgrade B1 - Bulk sampling of Subgrade T40-T42 - Moisture-density tests on DGAB C1-C8 - Cores of PCC surface FC01 - Bulk sample of PCC for molded specimen

Figure ___. Sampling and test plan for test section U16.

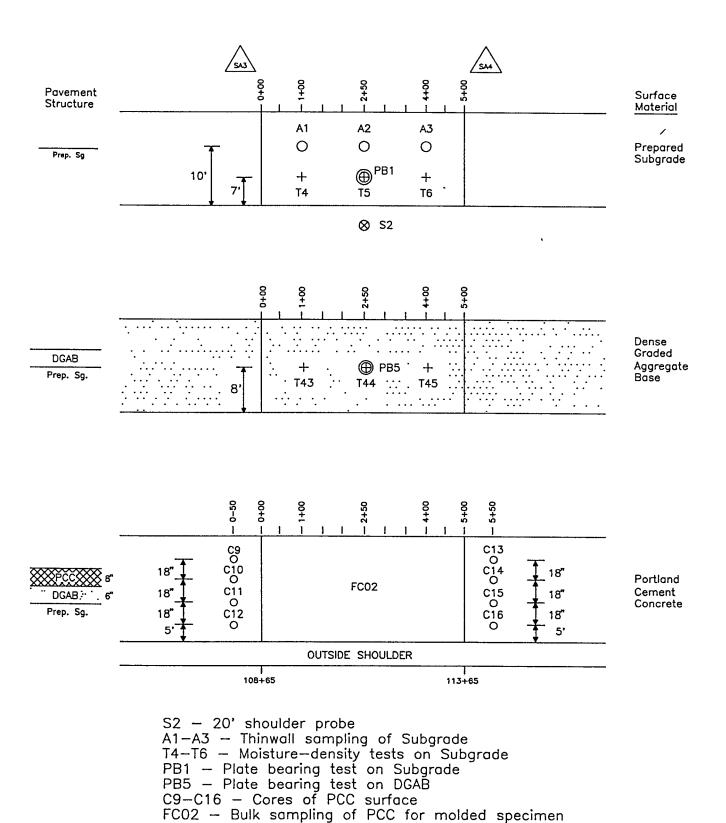
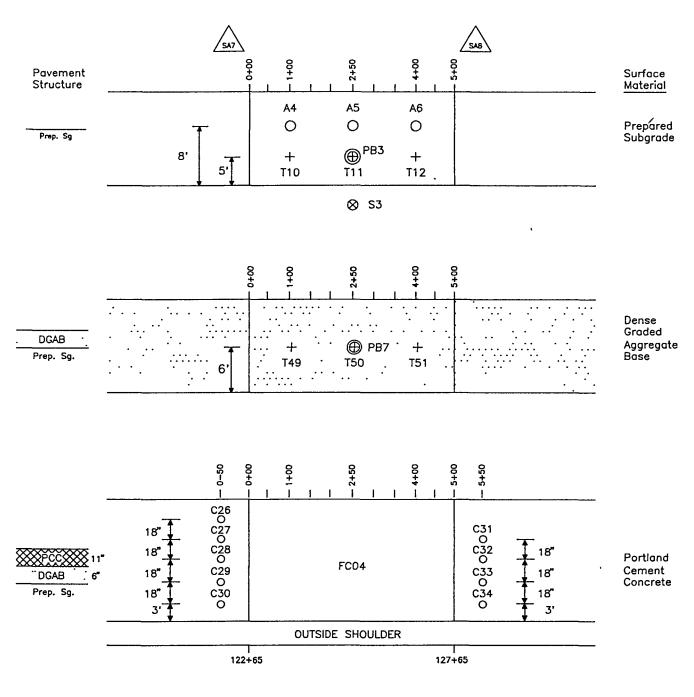
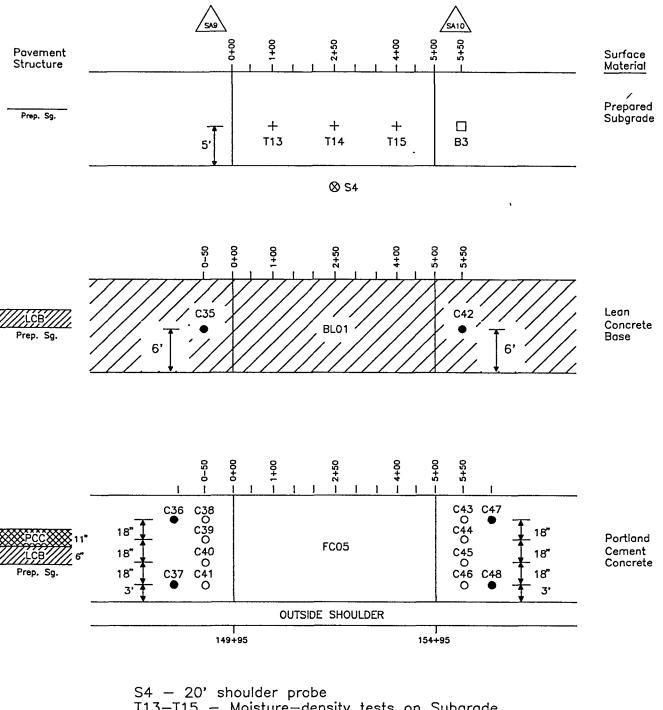




Figure ___. Sampling and test plan for test section U13.

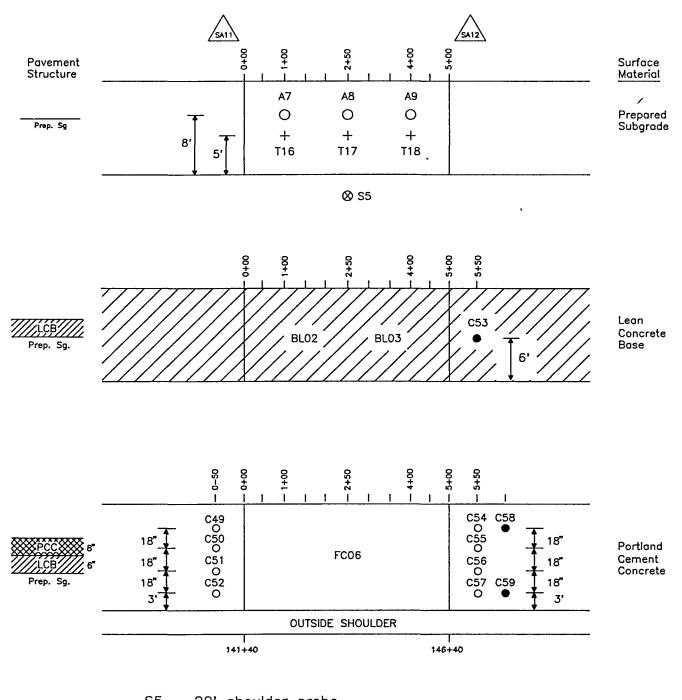

S3 — 20' shoulder probe
A4—A6 — Thinwall sampling of Subgrade
T10—T12 — Moisture—density tests on Subgrade
PB3 — Plate bearing test on Subgrade
T49—T51 — Moisture—density tests on DGAB
PB7 — Plate bearing test on DGAB
C26—C34 — Cores of PCC surface
FC04 — Bulk sample of PCC for molded specimen

Figure ___. Sampling and test plan for test section U15.

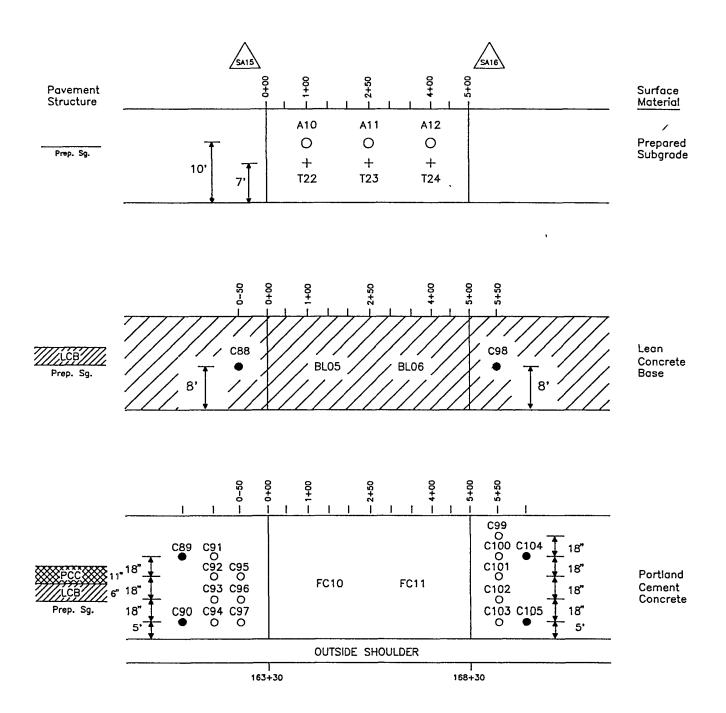

T13—T15 — Moisture—density tests on Subgrade
B2 — Bulk sampling of Subgrade
BL01 — Bulk sampling of LCB for molded specimen
C35, C42 — Cores of LCB
C36—C37, C47—C48 — Cores of PCC surface and LCB
C38—C41, C43—C46 — Cores of PCC surface
FC05 — Bulk sample of PCC for molded specimen

Figure ___. Sampling and test plan for test section U19.

S5 — 20' shoulder probe
A7—A9 — Thinwalled tube samples of Subgrade
T16—T18 — Moisture—density tests on Subgrade
Bl02—BL03 — Bulk samples of LCB for molded specimen
C53 — Core of LCB
C58—C59 — Cores of PCC surface and LCB
C49—C52, C54—C57 — Cores of PCC surface layer
FC06 — Bulk sample of PCC for molded specimen

Figure ___. Sampling and test plan for test section U18.

A10-A12 - Thinwall tube samples of Subgrade T22-T24 - Moisture-density tests on Subgrade BL05-BL06 - Bulk samples of LCB for molded specimen C88, C98 - Cores of LCB C89-C90, C104-C105 - Cores of PCC and LCB C91-C97, C99-C103 - Cores of PCC surface layer FC10-FC11 - Bulk samples of PCC for molded specimen

Figure ___. Sampling and test plan for test section U20.

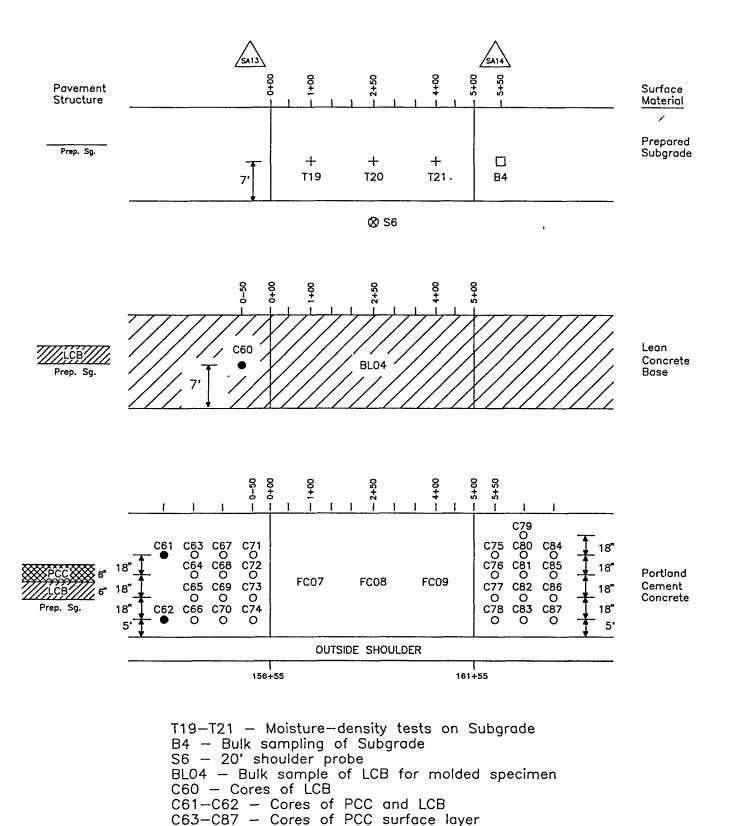
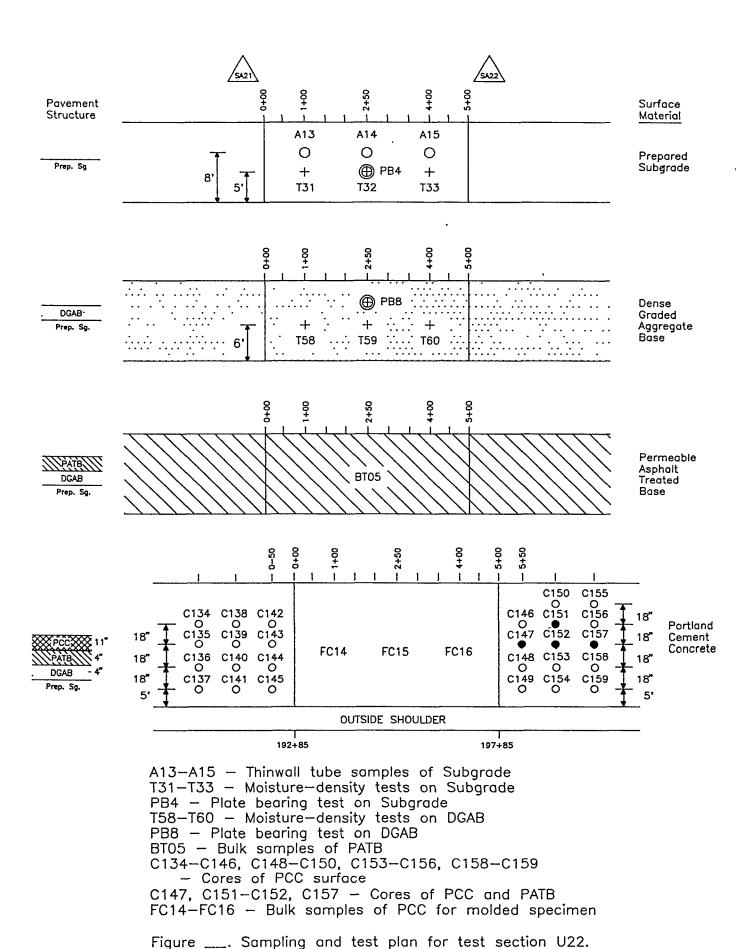
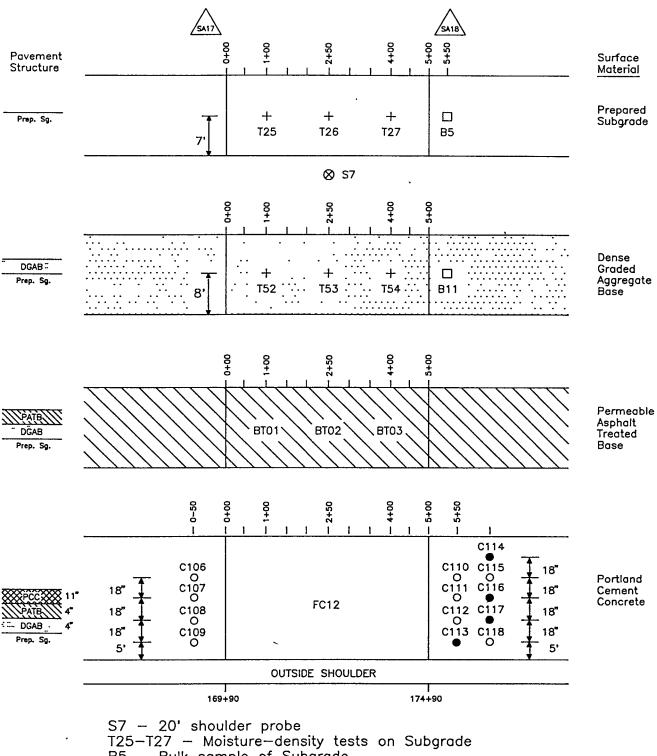
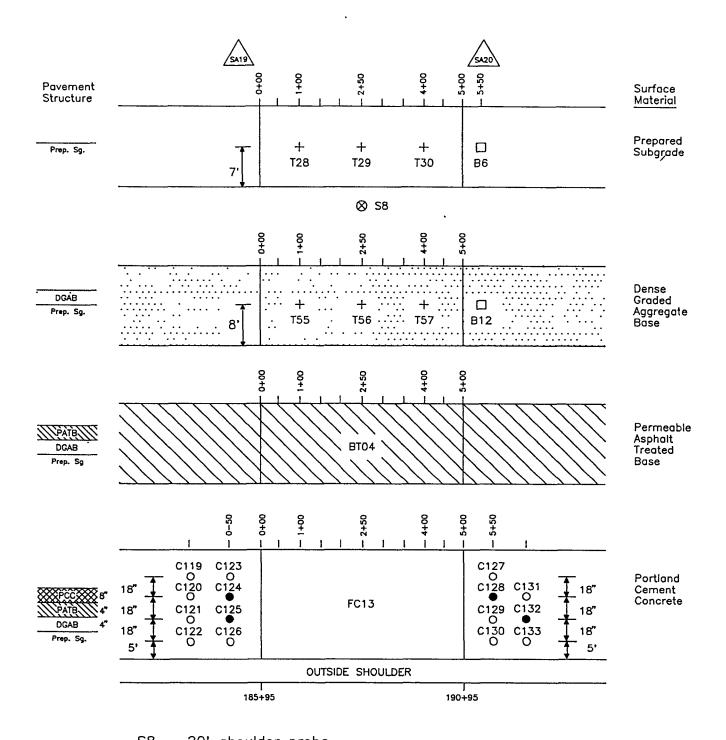




Figure ___. Sampling and test plan for test section U17.


FC07-FC09 - Bulk sample of PCC for molded specimen

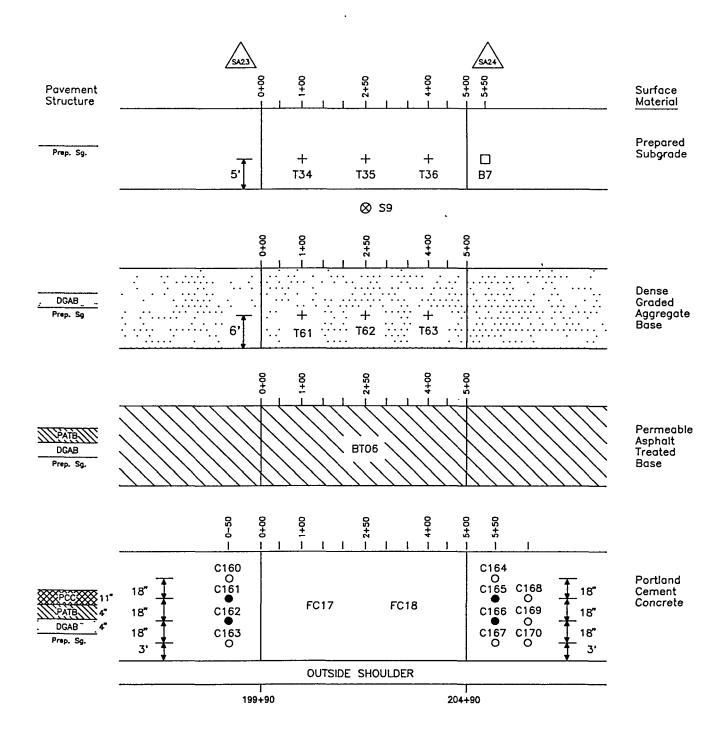
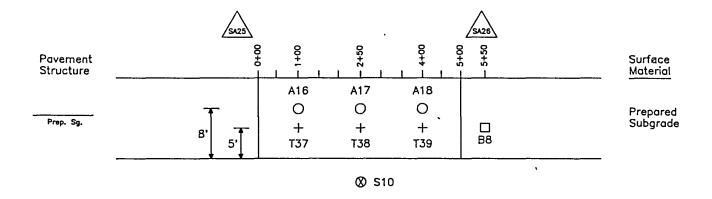
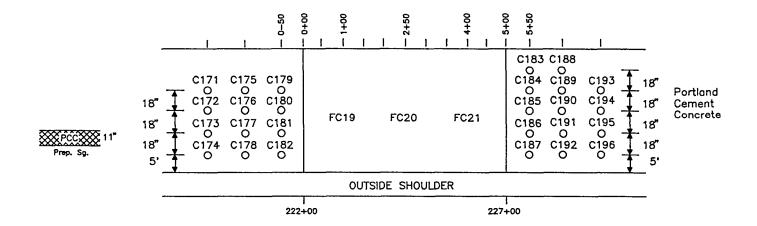

B5 — Bulk sample of Subgrade
T52—T54 — Moisture—density tests on DGAB
B11 — Bulk sample of DGAB
BT01—BT03 — Bulk sample of PATB
C106—C112, C116, C118 — Cores of PCC surface layer
C113—C114, C116—C117 — Cores of PCC and PATB
FC12 — Bulk samples of PCC for molded specimen

Figure ___. Sampling and test plan for test section U24.


S8 — 20' shoulder probe
T28—T30 — Moisture—density test on Subgrade
B6 — Bulk sample of Subgrade
T55—T57 — Moisture—density tests on DGAB
B12 — Bulk sample of DGAB
BT04 — Bulk sample of PATB
C119—C123, C126—C127, C129—C131, C133
— Cores of PCC surface layer
C124—C125, C128, C132 — Cores of PCC and PATB
FC13 — Bulk samples of PCC for molded specimen


Figure ___. Sampling and test plan for test section U21.

S9 — 20' shoulder probe
T34—T36 — Moisture—density test on Subgrade
B7 — Bulk sample of Subgrade
T61—T63 — Moisture—density tests on DGAB
BT06 — Bulk sample of PATB
C161—C162, C165—C166 — Cores of PCC and PATB
C160, C163—C164, C167—C170 — Cores of PCC surface
FC17—FC18 — Bulk sample of PCC for molded specimen

Figure ___. Sampling and test plan for test section U23.

S10 - 20' shoulder probe
A16-A18 - Thinwall tube samples of Subgrade
T37-T39 - Moisture-density tests on Subgrade
B8 - Bulk sample of Subgrade
C171-C196 - Cores of PCC surface
FC19-FC21 - Bulk samples of PCC for molded specimen

Figure ___. Sampling and test plan for test section U59.

APPENDIX E CONSTRUCTION DATA SHEETS

	SPS-2 CONSTRUCTION DATA SHEET 2	* STATE CODE * SPS PROJECT CODE	[08] [02] [24]
	EOMETRIC, SHOULDER AND DRAINAGE INFORMATION	* TEST SECTION NO.	[三王]
* 1.	LANE WIDTH (Feet)		114.1
2.	MONITORING SITE LANE NUMBER (LANE 1 IS OUTSIDE LANE, NEXT TO SHOULD LANE 2 IS NEXT TO LANE 1, ETC.))ER	[]
	SHOULDER DATA .	INSIDE SHOULDER	OUTSIDE / SHOULDER
* 3.	SHOULDER SURFACE TYPE Turf1 Granular2 Asphalt Concre Concrete4 Surface Treatment5 Other (Specify)6	[<u>4</u> .]	[<u>+</u> .]
* 4.	TOTAL SHOULDER WIDTH (Feet)	[_4.]	110.1
* 5.	PAVED SHOULDER WIDTH (Feet)	[-4.1]	[LQ.]
6.	SHOULDER BASE TYPE (CODES-TABLE A.6)	13L.1	13 1.1
7.	SHOULDER SURFACE THICKNESS (Inches)	[T 厂・ 0]	[<u></u> <u>O</u>]
8.	SHOULDER BASE THICKNESS (Inches)	[_4.0]	1_4.01
* 9.	SUBSURFACE DRAINAGE TYPE No Subsurface Drainage 1 Longitudinal I Transverse Drains 3 Drainage Blanket Drainage Blanket with Longitudinal Drains Other (Specify) 7	. 4 Well System	[<u>Z</u> .] . 5
*10.	SUBSURFACE DRAINAGE LOCATION Continuous Along Test Section l Interm	ittent 2	[]
11.	DIAMETER OF LONGITUDINAL DRAINPIPES (Inches)		[_4.0]
12.	SPACING OF LATERALS (Feet)		[<u>250</u> .]

SPS-2	CC	NST	RU	CT	ION	DATA
	5	HEE	T	4		
LAY	ΞR	DES	CR	IP	TIO	NS.

* STATE CODE * SPS PROJECT CODE

* TEST SECTION NO.

102

*1	*2 LAYER	*3 MATERIAL	*4	LAYER THIC	ENESSES (In	ches)
LAYER NUMBER	DESCRIPTION	TYPE CLASS	AVERAGE	MUMINIM	MAXIMUM	STD. DEV.
1	SUBGRADE(7)	[60]				
2	[06]	[26]	[4.0]			
3	1051	(<u>3</u> <u>L</u>)	1-4.01			
4	1031	(<u>04</u>)	[_11.0]			
5	[]	[]	(]			
6	[]	[]	[]			
7	[]	[]	[]			
8	[]	[]	[]			
9	[1	[]	[]			
10	1	[]	[.]			

* 5			SURFACE . Dense	TO "RIGID"	LAYER (F	Seet)	[_⊻.	·]
	(KOCK,	o cone	e, pense	Suare)				

NOTES:

1.	Layer 1	is	the	subgrade	soil,	the	highest	numbered	layer	is	the	pavement
	surface.											

2.	Layer description codes:		
	Overlay01	Base Layer05	Porous Friction Course09
	Seal/Tack Coat02	Subbase Layer06	Surface Treatment10
	Original Surface03	Subgrade07	Embankment (Fill)11
	HMAC Layer (Subsurface).04		, ,

- 3. The material type classification codes are presented in Tables A.5, A.6, A.7 and A.8 of the Data Collection Guide for Long Term Pavement Performance Studies, dated January 17, 1990 (Appendix B of SPS-2 Data Collection Guide).
- 4. Enter the average thickness of each layer and the minimum, maximum and standard deviation of the thickness measurements, if known.

PREPARER N	Denderson	EMPLOYER _	NCE	DATE	9-8-93
------------	-----------	------------	-----	------	--------

SPS-2 CONSTRUCTION DATA SHEET 5 LAYER THICKNESS MEASUREMENTS

* STATE CODE

* SPS PROJECT CODE * TEST SECTION NO.

LAYER THICKNESS MEASUREMENTS (Inches)

SHEET OF

Si (Inclus)						
		LAYER THICKNESS (INCHES)				
STATION NUMBER	OFFSET (Inches)	DENSE GRADED AGGREGATE BASE	PERMEABLE ASPHALT TREATED BASE	LEAN CONCRETE BASE	PCC SURFACE	
0+00		- 5 :	-4.2		11.7	
149+90	00151N181	-19-15/1-1-1 5/m/m/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	44445 		1447 101077 134014	
Q+ <u>5</u> <u>0</u>	0	<u>4 .8</u>	-4·4	·	<u> </u>	
170+40	- 19 0 -	4 3 V V -	41919190 4141444		11.4 11.3 11.1 10.9	
T+00	- <u>-</u> <u>C</u>	- 4·9	- 4·#		11.4	
170+90		43777 961-144	411111 4141014101 4141017777777777777777		11.4.2.1.1.1.1.0.8	
1+50	9	<u> </u>	<u>4</u> .5		<u> </u>	
171+40		44443	44445		1-1-1-1	
2+00	2	_ 골 속	_ 4.4			
171+90	- (g 0 - 7 lc - 3 2 - 1 10 8		419891		1 - 5 3 4 N O	
2+50	<u> </u>	-43.2 -3.2	_4.1		<u> 1 .3</u> <u>8</u>	
172+40	1 6 8 1 4 6 1 3 2 1 4 6	433333	44445			
3+00		_ 3 .3	<u> 4.4</u>			
172+90			41414151 		111111111111111111111111111111111111111	
LAYER NUMBI	ER1		3		4	

¹ from Construction Data Sheet 4

SPS-2 CONSTRUCTION DATA SHEET 5 LAYER THICKNESS MEASUREMENTS

* STATE CODE

* SPS PROJECT CODE * TEST SECTION NO.

LAYER THICKNESS MEASUREMENTS (Inches)

SHEET ____ OF

	- 1		5)		
	OFFSET (Inches)	DENSE GRADED AGGREGATE BASE	PERMEABLE ASPHALT TREATED BASE	LEAN CONCRETE BASE	PCC SURFACE
3+50	$-\frac{0}{\sqrt{6}}$	$-\frac{2}{7}\cdot \frac{1}{10}$	- 4 · 4		109
173+40 -	- 4 0 0 0 1 3 2 1 4 8	194994 194994 194994	44445		1777 17000 10000 10000
4+00	0	_ ‡ ·컄	- 4 · <u>U</u>		구 F ·클
	0 0 0 1 1 1 1 1	37014			17111 1999日 1918年十
4+50 -	- 6 0	$-\frac{1}{3} : \frac{1}{0}$	- 3 ·8	·_	+를·9
174+40	000 1000 1000 1000 1000 1000 1000 1000				11111 1105 1105 11
5+00	- 700	_ <u> 3</u> . <u>3</u>	-4·9		12.9 13:1 13:1
174+90	1498181 1498181		1 1 1 1 1 1 1 1 1 1		133 15 111150
+			:-		:_
_+					
		:_	:_	==:=	==:=
		:_	:_	:_	:_
-+ -		:_	:_	:_	==:-
		:_	:_		:_
LAYER NUMBER	<u> </u>	<u>-</u>	<u>∵</u>		<u>:-</u>

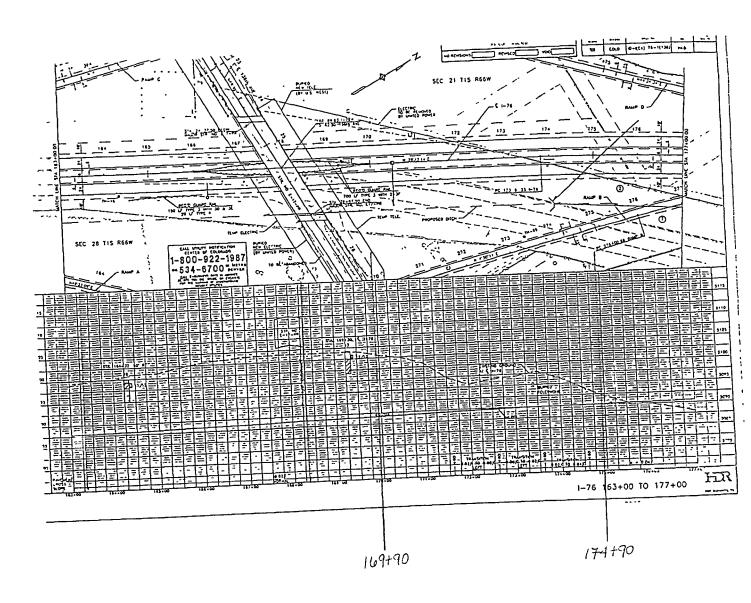
¹ from Construction Data Sheet 4

	SPS-2 CONSTRUCTION DATA SHEET 6		TATE CODE PS PROJECT CODE	[08]
_	SUBGRADE PREPARATION	* T	EST SECTION NO.	[] []
	SUBGRADE PREPARATION BEGAN (Month-Day-Year)		10T-	<u> 26.93</u>
	SUBGRADE PREPARATION COMPLETED (Month-Day-Year)	<u>[08</u> -	04-93
	PRIMARY COMPACTION EQUIPMENT			
	CODE TYPE			(_3
	COMPACTION EQUIPMENT TYPE CODES Sheepsfoot 1 Pneumatic Tired 2 Ste Single Drum Vibr 4 Double Drum Vibr Other (Specify) 6		Wheel Tandem 3	3
	GROSS WEIGHT (Tons)			[_ <u>5</u> .
			TYPE	PERCENT
	STABILIZING AGENT 1		[_]	[_N
	STABILIZING AGENT 2		[]	[
	STABILIZING AGENT TYPE CODES Portland Cement 1 Lime 2 Fly Ash, Fly Ash, Class N 4 Other (Specify) 5	Cla	ss C 3	
	TYPICAL LIFT THICKNESS (Inches) (For Fill Sections Only)			[_N.
	NOTE: Density Data is recorded on Sam	plin	g Data Sheet 8-1	
	SIGNIFICANT EVENTS DURING CONSTRUCTION (DISRUETC.)	PTIO	NS, RAIN, EQUIPM	ENT PROBLE
	210.)			

SPS-2 CONSTRUCTION DATA SHEET 7 CUT-FILL SECTION LOCATIONS * STATE CODE

* SPS PROJECT CODE * TEST SECTION NO.

*2 START	ORDER	*1 CUT-FILL ¹	REFERENCE PROJE	ECT STATION NUMBER	*4 TEST SECTION
3 +	URDER	*I G01-F1LL-	*2 START	*3 END	
20 21 22 23 24 25	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24		0 + 0 0 - (9 & + 0 0) - +	5 + 0 0 - 73 + 0 0 - 73 + 0 0 - 73 + 0 0 - 73 + 0 0 - 73 + 0 0 - 74 - 0 0 - 75 - 0	080216


NOTES:

1. Indicate the type of subgrade section with one of the following:

> Fill... 2 Cut... 1

A given Test Section No. will be repeated if both cut and fill 2. sections exist within the test section.

SHEET 8	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO. [24]	
SUBGRADE EXCAVATION AND DACKFILLING SKEICH	* TEST SECTION NO. [24]	

PREPARER N. (D) COLONE AND EMPLOYER AND

DATE 10 - 14 - 9 4

UNI	SPS-2 CONSTRUCTION DATA SHEET 9 BOUND AGGREGATE BASE MATERIAL PLACEMENT	* STATE CODE [08] * SPS PROJECT CODE [08] * TEST SECTION NO. [24]
*1.	UNBOUND BASE MATERIAL PLACEMENT BEGAN (Month-	Day-Year) [<u>08-05-93</u>]
*2.	UNBOUND BASE MATERIAL PLACEMENT COMPLETED (Mon	nth-Day-Year) $[08-05-93]$
*3.	LAYER NUMBER (From Sheet 4)	(<u>2</u>)
	PRIMARY COMPACTION EQUIPMENT	
*4.	CODE TYPE	[<u>3</u>]
	COMPACTION TYPE CODES Pneumatic - Tired 1 Steel Wheel Tandem. Double Drum Vibr 4 Other (Specify) 5	2 Single Drum Vibr 3
*5.	GROSS WEIGHT (Tons)	[<u>4.0</u>
¥6.	LIFT THICKNESSES	
	Nominal First Lift Placement Thickness (Inche	s) [_4.0
	Nominal Second Lift Placement Thickness (Inch	es) [
	Nominal Third Lift Placement Thickness (Inche	s)
	Nominal Fourth Lift Placement Thickness (Inch	(
	NOTE: Density Data is recorded on Sam	mpling Data Sheet 8-1
7.	SIGNIFICANT EVENTS DURING CONSTRUCTION (DISRUETC.)	UPTIONS, RAIN, EQUIPMENT PROBLEMS

	SHEET 10 PLANT-MIXED ASPHALT BOUND LAYERS AGGREGATE PROPERTIES	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	
* 1.	LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)		[3]
	COMPOSITION OF COARSE AGGREGATE	TYPE	PERCENT/
* 2.	•	[_]	[]
* 3.		[]	[]
* 4.	Crushed Stone 1 Manufactured gravel Crushed Slag 4 Manufactured Lightwei Other (Specify)		[] Gravel 3
	COMPOSITION OF FINE AGGREGATE	TYPE	PERCENT
* 5.		[1]	[1
* 6.		[_]	[]
* 7.	Natural Sand 1	[_]	[]
	Crushed or Manufactured Sand (From Crushed Gr Recycled Concrete 3 Other (Specify)		+
* 8.	TYPE OF MINERAL FILLER Stone Dust 1 Hydrated Lime 2 Port Fly Ash 4 Other (Specify) 5	cland Cement 3	[<u>_</u>]
•	BULK SPECIFIC GRAVITIES:		
* 9.	COARSE AGGREGATE (AASHTO T85 or ASTM C127)	·	[]
*10.	FINE AGGREGATE (AASHTO T84 or ASTM C128)		[]
*11.	MINERAL FILLER (AASHTO T100 or ASTM D854)		[]
*12.	AGGREGATE COMBINATION (CALCULATED)		[]
13.	EFFECTIVE SPECIFIC GRAVITY OF AGGREGATE COMB: (CALCULATED)	INATION	[]
	AGGREGATE DURABILITY TEST RESULTS (CODES, TA	BLE A.13)	
14. 15. 16. 17.	TYPE OF AGGREGATE Coarse Coarse Coarse and Fine - Combined	TYPE OF TEST [] [] []	RESULTS [] [] [] []
18.	POLISH VALUE OF COARSE AGGREGATES SURFACE LAYER ONLY (AASHTO T279, ASTM D331	9)	[]
PREPA	ARER N. GENDLUSON EMPLOYER NEE	DATE _	

	SPS-2 CONSTRUCTION DATA SHEET 11 PLANT-MIXED ASPHALT BOUND LAYERS ASPHALT CEMENT PROPERTIES	* STATE CODE * SPS PROJECT COI * TEST SECTION NO	
L	ASTIALI GETENI PROTEKTILO	" TEST SECTION NO	1241
* 1.	LAYER NUMBER (FROM CONSTRUCTION SHEET 4)		(<u>3</u>)
*2.	ASPHALT GRADE (SEE ASPHALT CODE SHEET, TABL	E A.16)	[<u>03</u>]
*3.	SOURCE (SEE SUPPLY CODE SHEET, TABLE A.14) (IF OTHER, SPECIFY)		[<u>7 le]</u>
4.	SPECIFIC GRAVITY OF ASPHALT CEMENT (AASHTO T228)		[1
	ORIGINAL ASPHALT CEMENT PROPERTIES (If a	vailable from suppl:	Ler)
5.	VISCOSITY OF ASPHALT AT 140°F (Poises) (AASHTO T202)	[1
6.	VISCOSITY OF ASPHALT AT 275°F (Centistokes) (AASHTO T202)		
7.	PENETRATION AT 77°F (AASHTO T49) (Tenths of (100 g., 5 sec.)	amm)	[]
	ASPHALT MODIFIERS (SEE TYPE CODE, A.15)	TYPE	QUANTITY (%)
8.	MODIFIER #1	[]	[]
9.	MODIFIER #2 (IF OTHER, SPECIFY)	[]	[]
10.	DUCTILITY AT 77°F (cm) (AASHTO T51)		[
11.	DUCTILITY AT 39.2°F (cm) (AASHTO T51)		[:
12.	TEST RATE FOR DUCTILITY MEASUREMENT AT 39.2°f (cm/Min)		[
13.	PENETRATION AT 39.2°F (AASHTO T49) (Tenths (200 g., 60 sec.)	of a mm)	[
14.	RING AND BALL SOFTENING POINT (AASHTO T53)	(°F)	[
	NOTE: If emulsified or cutback asphalt was spaces for "Original Asphalt Cement I	<u> </u>	the
			•
PREP	ARER N. HEMOLUSON EMPLOYER NE	DATE	

	SPS-2 CONSTRUCTION DATA SHEET 12 PLANT-MIXED ASPHALT BOUND LAYERS MIXTURE PROPERTIES	* STATE CODE [08] * SPS PROJECT CODE [02] * TEST SECTION NO. [24]
*1.	LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)	[<u>3</u>]
*2.	TYPE OF SAMPLES COMPACTED IN LABORATORY 1 TAKEN FROM T	EST SECTION 2
*3.	MAXIMUM SPECIFIC GRAVITY (NO AIR VOIDS) (AASHTO T209 OR ASTM D2041)	[]
	BULK SPECIFIC GRAVITY (ASTM D1188)	•
	MEAN [] MINIMUM []	NUMBER OF TESTS [] MAXIMUM [] STD. DEV. []
	ASPHALT CONTENT (PERCENT WEIGHT OF TOTAL MIX	- AASHTO T164 OR ASTM D2172)
*7. 8. 9.	MEAN $[3.330]$ MINIMUM $[5.010]$	NUMBER OF SAMPLES [] MAXIMUM [3.800] STD. DEV. []
	PERCENT AIR VOIDS	· · · · · · · · · · · · · · · · · · ·
	MEAN [] MINIMUM []	NUMBER OF SAMPLES []' MAXIMUM [] STD. DEV. []
*13	VOIDS IN MINERAL AGGREGATE (Percent)	[]
*14.	EFFECTIVE ASPHALT CONTENT (Percent)	[]
*15.	MARSHALL STABILITY (1bs) (AASHTO T245 OR ASTM	[]
*16.	NUMBER OF BLOWS	[]
*17.	MARSHALL FLOW (Hundredths of an Inch) (AASHTO T245 OR ASTM D1559)	[1
*18.	HVEEM STABILITY (AASHTO T246 OR ASTM D1561)	[]
*19.	HVEEM COHESIOMETER VALUE (GRAMS/25mm of Width (AASHTO T246 OR ASTM 1561)	[]
*20.	TYPE OF ANTISTRIPPING AGENT USED (SEE TYPE CODES, TABLE A.21) OTHER (SPECT	[]
*21.	ANTISTRIPPING AGENT USED: LIQUID 1 SO	DLID 2 [_]
*22 .	AMOUNT OF ANTISTRIPPING AGENT USED (Percent)	[]
	(LIQUID: enter percent of asphalt cement aggregate weight.)	weight SOLID: enter percent of
PREPA	RER N. Denderson EMPLOYER NCE	DATE

	SPS-2 CONSTRUCTION DATA SHEET 13 PLANT-MIXED ASPHALT BOUND LAYERS PLACEMENT DATA	* STATE CODE * SPS PROJECT * TEST SECTIO	CODE [OZ]
۲1.	DATE PAVING OPERATIONS BEGAN (Month-Day-Year)	į	108-24-921
÷2.	DATE PAVING OPERATIONS COMPLETED (Month-Day-You	ear) (08-24-931
+3	ASPHALT CONCRETE PLANT AND HAUL	`	
	Type Name Haul Distant	ce (Mi) Time (Min) Layer Number
	Plant 1 [Z] Dahlia Plant [8	<u> </u>	<u>)</u> i
	Plant 2 [_] [_] [_1 [1
	Plant Type: Batch 1 Drum Mix 2 0	ther3 Speci	fy
4.	MANUFACTURER OF ASPHALT CONCRETE PAVER	Bla	w-Knox 657
5.	MODEL DESIGNATION OF ASPHALT CONCRETE PAVER	PF	5000
6.	SINGLE PASS LAYDOWN WIDTH (Feet)		[<u>13.5</u>]
7.	PATB PLACEMENT LIFTS: Layer Number		[_ 3]
	Nominal First Lift Placement Thickness	(Inches)	[<u>5</u> . <u>0</u>]
	Nominal Second Lift Placement Thickness	(Inches)	[]
	Nominal Third Lift Placement Thickness	(Inches)	[]
8.	SIGNIFICANT EVENTS DURING CONSTRUCTION (dispetc.)	ruptions, rain	ı, equip. problems,

SPS-2 CONSTRUCTION DATA SHEET 14 PLANT-MIXED ASPHALT BOUND LAYERS

* STATE CODE

* SPS PROJECT CODE

* TEST SECTION NO COMPACTION DATA *1. DATE PAVING OPERATIONS BEGAN (Month-Day-Year' *2. DATE PAVING OPERATIONS COMPLETED Month-Day-Year) *3. LAYER NUMBER : 225.1 *4. MIXING TEMPERATURE (*F) 5. LAYDOWN TEMPERATURES (°F) Number of Tests Maximum .. Standard Deviation... [___

ROLLER DATA

Roller Code ≠	Roller Description	Gross Wt (Tons)	Tire Press (psi)	Fraquency (Vibr./Min)	Amplitade (Inches)	
B C D E F G H I J K L M N O	Steel-Whl Tandem Steel-Whl Tandem Steel-Whl Tandem Steel-Whl Tandem Steel-Whl Tandem Pneumatic-Tired Pneumatic-Tired Pneumatic-Tired Pneumatic-Tired Single-Drum Vibr. Single-Drum Vibr. Single-Drum Vibr. Double-Drum Vibr. Double-Drum Vibr. Double-Drum Vibr. Double-Drum Vibr. Double-Drum Vibr.					
Q	Other					
COMPAC	TION DATA	First L	ift Second	Lift Thir	d Lift For	urth Lift
Roller	Code (A-Q)	ع ا	<u>A</u> .			
Roller	Code (A-Q)	_	_ !			<u> </u>
			_ !			·
Compac	ted Thickness (In)	- 9 - 1	24 -			
	A B C D E F G H I J K L M N O P Q COMPACT BREAKD Roller Covera INTERM Roller Covera FINAL Roller Covera	A Steel-Whl Tandem B Steel-Whl Tandem C Steel-Whl Tandem D Steel-Whl Tandem E Pneumatic-Tired F Pneumatic-Tired G Pneumatic-Tired H Pneumatic-Tired I Single-Drum Vibr. J Single-Drum Vibr. K Single-Drum Vibr. M Double-Drum Vibr. N Double-Drum Vibr. O Double-Drum Vibr. P Double-Drum Vibr. Q Other COMPACTION DATA BREAKDOWN Roller Code (A-Q) Coverages INTERMEDIATE Roller Code (A-Q) Coverages FINAL Roller Code (A-Q) Coverages Air Temperature (°F) Compacted Thickness (In)	A Steel-Whl Tandem B Stael-Whl Tandem C Steel-Whl Tandem D Steel-Whl Tandem D Steel-Whl Tandem E Pneumatic-Tired F Pneumatic-Tired H Pneumatic-Tired H Pneumatic-Tired I Single-Drum Vibr. J Single-Drum Vibr. K Single-Drum Vibr. L Single-Drum Vibr. M Double-Drum Vibr. N Double-Drum Vibr. O Double-Drum Vibr. P Double-Drum Vibr. Q Other COMPACTION DATA First L BREAKDOWN Roller Code (A-Q) Coverages	A Steel-Whl Tandem B Steel-Whl Tandem C Steel-Whl Tandem D Steel-Whl Tandem E Pneumatic-Tired F Pneumatic-Tired G Pneumatic-Tired H Pneumatic-Tired I Single-Drum Vibr. J Single-Drum Vibr. K Single-Drum Vibr. M Double-Drum Vibr. N Double-Drum Vibr. O Double-Drum Vibr. P Double-Drum Vibr. Q Other COMPACTION DATA BREAKDOWN Roller Code (A-Q) Coverages FINAL Roller Code (A-Q) Coverages Air Temperature (°F) Compacted Thickness (In)	A Steel-Whl Tandem B Steel-Whl Tandem C Steel-Whl Tandem D Steel-Whl Tandem E Pneumatic-Tired F Pneumatic-Tired G Pneumatic-Tired H Pneumatic-Tired I Single-Drum Vibr. J Single-Drum Vibr. L Single-Drum Vibr. M Double-Drum Vibr. N Double-Drum Vibr. O Double-Drum Vibr. P Double-Drum Vibr. Q Other COMPACTION DATA First Lift Second Lift Thir BREAKDOWN Roller Code (A-Q) Coverages FINAL Roller Code (A-Q) Coverages Air Temperature (°F) Compacted Thickness (In)	A Steel-Whl Tandem B Steel-Whl Tandem C Steel-Whl Tandem D Steel-Whl Tandem E Pneumatic-Tired F Pneumatic-Tired G Pneumatic-Tired H Pneumatic-Tired I Single-Drum Vibr. K Single-Drum Vibr. K Single-Drum Vibr. M Double-Drum Vibr. O Double-Drum Vibr. O Double-Drum Vibr. Q Other COMPACTION DATA First Lift Second Lift Third Lift For BREAKDOWN Roller Code (A-Q) Coverages INTERMEDIATE Roller Code (A-Q) Coverages PAir Temperature (°F) Compacted Thickness (In)

	PO	SPS-2 CONSTRUCTION DATA SHEET 15 RTLAND CEMENT CONCRETE LAYERS-JOINT DATA	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	[<u>08]</u> [<u>02]</u> [<u>24</u>]
*	1.	LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)		<u>[4]</u>
*	2.	AVERAGE CONTRACTION JOINT SPACING (Feet)		<u>[15.01</u>
	3.	(RANDOM JOINT SPACING, IF ANY:)	
*	4.	SKEWNESS OF JOINTS (ft/lane)	,	[<u>.0</u>]
*	5.	TRANSVERSE CONTRACTION JOINT LOAD TRANSFER SYS Round Dowels	. 1	【上】
*	6.	ROUND DOWEL DIAMETER (Inches)		11.501
*	7.	DOWEL SPACING (Inches)		[12.]
	8.	DISTANCE OF NEAREST DOWEL FROM OUTSIDE LANE-SHOULDER EDGE (Inches)		[11.0]
	9.	DOWEL LENGTH (Inches)		[<u>] 8</u> .]
•	LO.	DOWEL COATING Paint and/or Grease Plastic Monel Stainless Steel Epoxy Other (Specify)	. 2 . 3 . 4 . 5	(丁)
•	11.	METHOD USED TO INSTALL MECHANICAL LOAD TRANSF Preplaced on Baskets Mechanically Installed Other (Specify)	. 1 . 2	<u>[</u>
•	12.	DOWEL ALIGNMENT CHECKED BEFORE PLACEMENT (Y/N)	(<u>\times_1</u>)
	13.	DOWEL ALIGNMENT CHECKED AFTER PLACEMENT (Y/N)		[<u>N</u>]
		If Yes, describe method used (e.g. Pachometer, Ground Penetrating Radar)		

PORTL	SPS-2 CONSTRUCTION DATA SHEET 16 AND CEMENT CONCRETE LAYERS-JOINT DATA CONT'D	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	[08] [02] [2 1]
* 1.	LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)	[4]
* 2.	METHOD USED TO FORM TRANSVERSE JOINTS Sawed		[_]
* 3.	TYPE OF LONGITUDINAL JOINT (BETWEEN LANES) Butt		[<u>2]</u>
* 4.	TYPE OF SHOULDER-TRAFFIC LANE JOINT Butt		[<u>Z</u>]
* 5.	AVERAGE DEPTH OF SAWCUT, FROM MEASUREMENTS	(Inches)	12.751
* 6.	TIME INTERVAL BETWEEN CONCRETE PLACEMENT AND	SAWCUT (HOURS)	· [<u>Le</u> .]
7.	TRANSVERSE JOINT SEALANT TYPE (AS BUILT) Preformed (Open Web) 1 Rubberi: Asphalt	ulus Silicone 4	(5)
TRANS	VERSE JOINT SEALANT RESERVOIR (AS BUILT)		
8.	WIDTH, (Inches)	• • • • • • • • • • • • • • • • • • • •	[38]
9.	DEPTH, (Inches)		[25]
LONGI	TUDINAL JOINT SEALANT RESERVOIR (AS BUILT)		
10.	WIDTH, (Inches)	•••••	[<u>38</u>]
11.	DEPTH, (Inches)	•••••	[<u>25</u>]
12.	BETWEEN LANE TIE BAR DIAMETER (Inches)		[<u>.625</u>]
13.	BETWEEN LANE TIE BAR LENGTH (Inches)		[30.]
14.	BETWEEN LANE TIE BAR SPACING (Inches)		[30.0]
SHOUL	DER-TRAFFIC LANE JOINT SEALANT RESERVOIR (AS	BUILT)	
15.	WIDTH, (Inches)		[38]
16.	DEPTH, (Inches)	• • • • • • • • • • • • • • • • • • • •	1251
PREP.	ARER N. Hendelson EMPLOYER NCE		1-10-93

P	SHEET 18 CORTLAND CEMENT CONCRETE		* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	[08] [02] [24]
*1.	LAYER NUMBER (FROM CON	STRUCTION DATA SHEET 4)		[4]
	MIX DESIGN (OVEN DRIED) WEIGHT - PER CUBIC YAR	TD)	
*2.	Coarse Aggregate (Pour	nds)	[_	18651
*3.	Fine Aggregate (Pounds	3)	[_	935.1
*4.	Cement (Pounds)		[_	<u> </u>
*5.	Water (Pounds)			257.1
* 6.		Cement Type Codes, Table fy South Western Type		(<u>55</u>)
* 7.	ALKALI CONTENT OF CEME	INT, (PERCENT BY WEIGHT	OF CEMENT)	<u>59</u>
ADMI	XTURES (PERCENT BY WEIGH	IT OF CEMENT)		
		TYPE CODE		AMOUNT
* 8.	ADMIXTURE #1	[<u>10.0</u>]	1	_ <u>20.01</u>
* 9.	ADMIXTURE #2	[<u>8</u> . <u>0</u>]	!	025
*10.	ADMIXTURE #3	[]?WRA	I	<u>0.3</u> j
		xture Codes, Table A.12		
AGGR	EGATE DURABILITY TEST RE (SEE DURABILITY TEST T	SULTS TYPE CODES, TABLE A.13)		
	TYPE OF AGGREGATE	TYPE OF TEST	RESULTS	
11	. Coarse	<u>[0 </u>	[_32.0]	
12	. Coarse	[]	[]	
13	. Coarse	[]	[]	
14	. Coarse and Fine	[]	[]	

	SPS-2 CONSTRUCTION DATA	+ cm	TE CODE		(00)
	SHEET 19	3	PROJECT	CODE	[<u>08]</u> [<u>02]</u>
	PORTLAND CEMENT CONCRETE LAYERS MIXTURE DATA (CONTINUED)	* TES	T SECTION	N NO.	[24]
* 1.	LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)				(4)
	COMPOSITION OF COARSE AGGREGATE			TYPE	PERCENT
* 2.	•		[7]		[100.1
* 3.			[_]		[1
* 4.			[_]		[]
	Crushed Stone 1 Manufactured gravel Crushed Slag 4 Lightweight Other (Specify)	5			el 3 crete 6
* 5.	GEOLOGIC CLASSIFICATION OF COARSE AGGREGATE (SEE GEOLOGIC CLASSIFICATION CODES, TAR	BLE A.9)		[_√.]
COMPO	SITION OF FINE AGGREGATE		TYPE		PERCENT
* 6.			(<u> </u>		[100.]
* 7.			[_]		[1
* 8.			[_]		[1'
	Natural Sand 1 Crushed, Manufactured Sand (From Crushed Grankecycled Concrete 3 Other (Specify)				4
9.	INSOLUBLE RESIDUE, PERCENT (ASTM D3042)				[_ <u>N</u>]
10.	GRADATION OF COARSE AGGREGATE 11. GR	ADATION	OF FINE	AGGRE	GATE
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 8 . 10 . 16 . 30 . 40	··	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
BULK	SPECIFIC GRAVITIES:				5
12.	Coarse Aggregate (AASHTO T85 or ASTM C127)				12.7301
13.	Fine Aggregate (AASHTO T84 or ASTM C128)				126001

SPS-2 CONSTRUCTION DATA SHEET 20 PORTLAND CEMENT CONCRETE LAYERS PLACEMENT DATA

* STATE CODE

* SPS PROJECT CODE * TEST SECTION NO.

*1.	DATE PAVING OPERATIONS BEGAN (Month-Day-Year)	109-07-931
*2.	DATE PAVING OPERATIONS COMPLETED (Month-Day-Year)	109-08-931
* 3.	LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)	(4)
*4.	CONCRETE MIX PLANT AND HAUL	
	Name Haul Distance (Mi)	Time (Min)
	Plant 1	[<u>5</u>] []
* 5.	PAVER TYPE Slip Form Paver 1 Side Form 2 Other (Specify)	[1]
6.	PAVER MANUFACTURER AND MODEL NUMBER GOMACO PS 60	
7.	SPREADER TYPE (if applicable)	
8.	spreader manufacturer and model number Caterpillar SF	-550
	· · · · · · · · · · · · · · · · · · ·	
9.	WIDTH PAVED IN ONE PASS (Feet)	[<u>38.0]</u>
10.	DOWEL PLACEMENT METHOD Dowel Bar Inserter (DBI) 1 Dowel Basket 2	[<u>Z</u>]
11.	NUMBER OF VIBRATORS	[<u>Z</u> 6]
12.	VIBRATOR SPACING (Inches)	<u>[] 8</u> 1
13.	DEPTH OF VIBRATORS BELOW SURFACE (Inches)	[<u> </u>
14.	ADDITIONAL VIBRATION APPLIED NO NO.	

	SPS-2 CONSTRUCTION DATA SHEET 21 PORTLAND CEMENT CONCRETE LAYERS PLACEMENT DATA (CONTINUED)	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	[<u>08</u>] [<u>24</u>]
1.	CONSOLIDATION OF MATERIALS Internal Vibrators 1 Vibrating Screeds. Rolling 4 Tamping 5 Other (Specify) 6	2 Troweling 3	[十]
2.	FINISHING Screeding 1 Hand-Troweling 2 Mach Other (Specify) 4 1,2,3	ine-Troweling 3	(<u>4</u>)
3.	Burlap Curing Blankets 2 Cot	lap-Polyethylene Blanketon Mat Curing	6
4.	Broom 2 Ast	oved Float	5

	PO	ORTLAND CEMENT CONCRETE SURFACE LAYER	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	[08] [02] [24]
•	1.	DATE PROFILE MEASURED (Month-Day-Year)	102	15-931
	2.	PROFILOGRAPH TYPE California 1 Rainha	rt 2	[]
	3.	PROFILE INDEX (Inches/Mile).		1/2/71
	4.	INTERPRETATION METHOD Manual 1 Mechanical.	. 2 Computer 3	[]
	5.	HEIGHT OF BLANKING BAND (Inches)		10.201
	6.	CUTOFF HEIGHT (Inches)	,	[]
	7.	SURFACE PROFILE USED AS BASIS OF INCENTIVE PAY	MENT? (YES, NO)	(<u>Y</u>)
	8.	WAS SURFACE PROFILE CORRECTED BY DIAMOND GRIND	ING? (YES, NO)	[<u>N</u>]
		IF YES COMPLETE THE FOLLOWING:		
	9.	DATE DIAMOND GRINDING OPERATIONS BEGAN (Month-	Day-Year) [
	10.	DATE DIAMOND GRINDING OPERATIONS COMPLETED (Mo	onth-Day-Year)[1
*	11.	REASON FOR GRINDING Elimination of Faulting 1 Elimination of Improve Skid Resistance 3 Restoration of Transverse Drainage Slope 4 Correction of Construction Deficiencies 5 Other (Specify) 6	Slab Warping 2	[_].
	12.	AVERAGE DEPTH OF CUT (Inches)		[]
	13.	CUTTING HEAD WIDTH (Inches)	[_]
	14.	AVERAGE GROOVE WIDTH (Inches)		[_ ·_]
	15.	AVERAGE SPACING BETWEEN BLADES (Inches)		[.]

SPS-2 CONSTRUCTION DATA

PREPARER Michael Boro EMPLOYER COOT DATE 5/24/94

SPS-2 C	ONSTRUCTION I	DATA		
;	SHEET 27			
MISCELLANEOUS	CONSTRUCTION	NOTES	AND	COMMENT

* STATE CODE * SPS PROJECT CODE

* TEST SECTION NO.

Provide any miscellaneous comments and notes concerning construction operations which may have an influence on the ultimate performance of the test sections or which may cause undesired performance differences to occur between test sections. Also include any quality control measurements or data for which space is not provided on other forms. Provide an indication of the basis for such measurements, such as an ASTM. AASHTO, or Agency standard test designation.

High winds becan about 3:05 pm @ Stn 173+50
High winds becan about 3:05 pm @ Stn 173+50 with lots of dust. Began raining heavily @ 3:10 pm -
Stopped paving and nut in a construction joint a
Stopped paving and put in a construction joint a Stn. 173+40 - Section was covered with plastic
classing as another as assisted = 30 minutes
STUETTING US GUILETY US POSSIBLE = SO MINUARES.
Paving resumed next day from Stn. 1+3+40 to encl
sheeting as quickly as possible = 30 minutes. Paving resumed next day from Stn. 173+40 to encl of monitoring section 169+40.
O

G	SPS-2 CONSTRUCTION DATA SHEET 2 EOMETRIC, SHOULDER AND DRAINAGE INFORMATION	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	[08] [02] [15]
* 1.	LANE WIDTH (Feet)		[12.]
2.	MONITORING SITE LANE NUMBER (LANE 1 IS OUTSIDE LANE, NEXT TO SHOULD! LANE 2 IS NEXT TO LANE 1, ETC.)	ER.	[]
	SHOULDER DATA	INSIDE SHOULDER	OUTSIDE / SHOULDER
* 3.	SHOULDER SURFACE TYPE Turf 1 Granular 2 Asphalt Concre Concrete 4 Surface Treatment 5 Other (Specify) 6	te 3 [<u>4</u> .]	[4]
* 4.	TOTAL SHOULDER WIDTH (Feet)	[<u> 4.</u>]	[<u>]</u> <u>0</u> .]
* 5.	PAVED SHOULDER WIDTH (Feet)	[_4:1	110.1
6.	SHOULDER BASE TYPE (CODES-TABLE A.6)	126.1	[26.]
7.	SHOULDER SURFACE THICKNESS (Inches)	[11.0]	[1.0]
8.	SHOULDER BASE THICKNESS (Inches)	[<u>le. 0</u>]	[<u>b</u> . 0]
* 9.	SUBSURFACE DRAINAGE TYPE No Subsurface Drainage l Longitudinal D Transverse Drains 3 Drainage Blanket Drainage Blanket with Longitudinal Drains Other (Specify) 7	4 Well System	[<u>_</u> .]
*10.	SUBSURFACE DRAINAGE LOCATION Continuous Along Test Section l Intermi	ttent 2	<u>W</u> .1
11.	DIAMETER OF LONGITUDINAL DRAINPIPES (Inches)		[<u>\vec{\vec{\vec{\vec{\vec{\vec{\vec{</u>
12.	SPACING OF LATERALS (Feet)		[_]]

SPS-2 CONSTRUCTION DATA SHEET 4 LAYER DESCRIPTIONS

* STATE CODE

* SPS PROJECT CODE

* TEST SECTION NO.

*1 LAYER	*2 LAYER DESCRIPTION	*3 MATERIAL TYPE	*4]	LAYER THICE	CNESSES (In	nches)
NUMBER	DESCRIPTION	CLASS	AVERAGE	MUNIMUM	MUMIXAM	STD. DEV.
1	SUBGRADE(7)	[Te D]				
2	1051	[26]	[(g. <u>D</u>]			
3	10.31	10 41	[_11.0]			
4	[]	[]	[]		:-	
5	[]	[1	[]			
6	[]	[]	[· _]			
7	[]	[]	[]			
8	[]	[]	[]			
9	[]	[]	[]			
10	[]	[].	[]		'-	

* 5	DEPTH	BELOW	SURFACE	TO	"RIGID"	LAYER	(Feet)	
	(Rock,	Stone	e, Dense	Sha	ale)			

[_ \(\lambda \) \ _]

NOTES:

- Layer 1 is the subgrade soil, the highest numbered layer is the pavement surface.
- Layer description codes: Overlay......01 Base Layer......05 Porous Friction Course..09 Seal/Tack Coat......02 Subbase Layer....06 Surface Treatment.....10 Original Surface......03 Subgrade......07 Embankment (Fill).....11 HMAC Layer (Subsurface).04 Interlayer.....08
- The material type classification codes are presented in Tables A.5, A.6, A.7 and 3. A.8 of the Data Collection Guide for Long Term Pavement Performance Studies, dated January 17, 1990 (Appendix B of SPS-2 Data Collection Guide).
- Enter the average thickness of each layer and the minimum, maximum and standard deviation of the thickness measurements, if known.

SPS-2 CONSTRUCTION DATA SHEET 5 LAYER THICKNESS MEASUREMENTS

* STATE CODE

* SPS PROJECT CODE * TEST SECTION NO.

LAYER THICKNESS MEASUREMENTS (Inches)

SHEET

		LAYER THICKNESS (INCHES)			
STATION NUMBER	OFFSET (Inches)	DENSE GRADED AGGREGATE BASE	PERMEABLE ASPHALT TREATED BASE	LEAN CONCRETE BASE	PCC SURFACE
0+00	- 3 A	- 돌 · 를			11.5
122+45	131704 1-1-1-1				
0+50	<u>- 3 Ω</u>	- 블·블			11.0
123+15		- - - - - - - - - - - - - - - - - - -			1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
1+00	- 3 6	<u>lo .0</u>			+ + - 4
123+65	(19)US)41 3)H0 4				45.55.4 11111
<u> 1+56</u>	- 3 6	<u> </u>			11.2
124+15		- 하하하나 나이나!			11111 1434 14
2+00	$-\frac{0}{3}$	- <u>6</u> : <u>1</u> 5 : 8			<u> </u>
124+65					3/5/5/4/N
2+50	_ = ु	<u> </u>			
125+15	0.9121804 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	- 			
<u>3+00</u>	- 3 <u>0</u>	_ 5 .9			
125+65		914174 145914 1 5 5 9 14			1 1 3 1 1 4 1 1 1 1 1 1 1 1
LAYER NUMBI	ER1	<u> </u>			3_

¹ from Construction Data Sheet 4

SI	?S-2	CONST	RUCT	'ION	DATA
		SHEE	T 5		
LAYER	THIC	IXNESS	MEA	SUR	MENTS

* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.

LAYER THICKNESS MEASUREMENTS (Inches)

SHEET

		LAYER THICKNESS (INCHES)			
STATION NUMBER	OFFSET (Inches)	DENSE GRADED AGGREGATE BASE	PERMEABLE ASPHALT TREATED BASE	LEAN CONCRETE BASE	PCC SURFACE
<u>3+5 o</u>	<u> </u>	<u>5.8</u> _ <u>u</u> .z	:_	:_	
126+15		0 2 2 2 3 3 4 3 4	:_		1140
4+00	<u> </u>	<u> </u>	:_	:_	<u> </u>
126+65	- 3/2 - 3/4 - 1 0/4 - 1 4/4	3 40 4 3 			그 나 · 스
4+50	-30	<u> </u>	:_	:_	1 1 · ±
177+15	0512184 131-1-1-1		:_		11:4
<u>5+00</u>	<u> </u>	_ 5 . I	:_	:_	11:2
127+65	3704 	1	:_		1 1 · · · · · · · · · · · · · · · · · ·
+		:_	:_	:_	_=:=
		:_	:_	:_	==:=
+		:_	:_	:_	_=:=
		:	:	:_	:_
_+					
		:_		:_	_=:=
LAYER NUMB	ER ¹	_2			3_

¹ from Construction Data Sheet 4

	SHEET 6	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	1081 1081 1081
*1.	SUBGRADE PREPARATION BEGAN (Month-Day-Year)	109-	29-931
*2.	SUBGRADE PREPARATION COMPLETED (Month-Day-Year)	(<u>10 - </u>	07.931
	PRIMARY COMPACTION EQUIPMENT		
* 3.	CODE TYPE		(4)
	COMPACTION EQUIPMENT TYPE CODES Sheepsfoot 1 Pneumatic Tired 2 Stee Single Drum Vibr 4 Double Drum Vibr Other (Specify) 6		
* 4.	GROSS WEIGHT (Tons)		[_4.0]
		TYPE	PERCENT
* 5.	STABILIZING AGENT 1	[_]	[_ <u>~</u>]
* 6.	STABILIZING AGENT 2	[]	[]
	STABILIZING AGENT TYPE CODES Portland Cement 1 Lime 2 Fly Ash, Fly Ash, Class N 4 Other (Specify) 5	Class C 3	,
* 7.	TYPICAL LIFT THICKNESS (Inches) (For Fill Sections Only)		[78.0]
	NOTE: Density Data is recorded on Samp	pling Data Sheet 8-1	
8.	SIGNIFICANT EVENTS DURING CONSTRUCTION (DISRUFETC.)	PTIONS, RAIN, EQUIPME	NT PROBLEMS,
	1		

SPS-2 CONSTRUCTION DATA SHEET 7 CUT-FILL SECTION LOCATIONS * STATE CODE

* SPS PROJECT CODE * TEST SECTION NO.

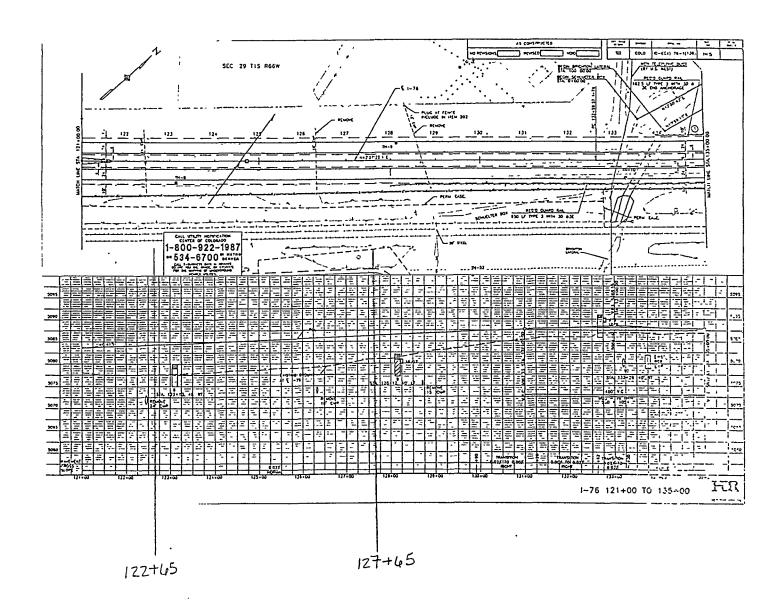
ORDER	*1 CUT-FILL1	REFERENCE PROJECT STATION NUMBER *4 TEST SECTION		
ORDER	WI COLTINE	*2 START	*3 END	NUMBER 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25		0 + 0 0 20 + 70 - 1 - 1 - 1 - 1 - 1 - 1	55 + 7 0 - 2 5 + 7 0 - 2 5 7 0 - 3 5 7 0 - 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	080216

Indicate the type of subgrade section with one of the following: NOTES: 1.

> Fill... 2 Cut... 1

A given Test Section No. will be repeated if both cut and fill 2. sections exist within the test section.

PREPARER N. HINDLUST EMPLOYER NCE DATE 10-17-94


SPS-2 CONSTRUCTION DATA
SHEET 8
SUBGRADE EXCAVATION AND BACKFILLING SKETCH

* STATE CODE

* SPS PROJECT CODE

* TEST SECTION NO.

[D] [O] [L5]

PREPARER N. C. CONSON EMPLOYER NEE

DATE

UNE	SHEET 9 SOUND AGGREGATE BASE MATERIAL PLACEMENT	* SPS PROJECT CODE [02] * TEST SECTION NO. [15]
*1.	UNBOUND BASE MATERIAL PLACEMENT BEGAN (Month-	Day-Year) [10-08-93]
*2.	UNBOUND BASE MATERIAL PLACEMENT COMPLETED (Mon	nth-Day-Year) [10-08-93]
*3.	LAYER NUMBER (From Sheet 4)	(<u>Z</u>)
	PRIMARY COMPACTION EQUIPMENT	
*4.	CODE TYPE	[3]
	COMPACTION TYPE CODES Pneumatic - Tired 1 Steel Wheel Tandem. Double Drum Vibr 4 Other (Specify) 5	•
* 5.	GROSS WEIGHT (Tons)	[<u>4.0</u>]
* 6.	LIFT THICKNESSES	
	Nominal First Lift Placement Thickness (Inche	s) [_(o. <u>0</u>]
	Nominal Second Lift Placement Thickness (Inch	es) []
	Nominal Third Lift Placement Thickness (Inche	s) []
	Nominal Fourth Lift Placement Thickness (Inch	es) []
	NOTE: Density Data is recorded on Sam	pling Data Sheet 8-1
7.	SIGNIFICANT EVENTS DURING CONSTRUCTION (DISRU	PTIONS, RAIN, EQUIPMENT PROBLEMS,
	ETC.)	

POF	SPS-2 CONSTRUCTION DATA SHEET 15 RTLAND CEMENT CONCRETE LAYERS-JOINT DATA	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	[TS] [08]
* 1.	LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)		131
* 2.	AVERAGE CONTRACTION JOINT SPACING (Feet)	[_ <u>15.0</u>]	
3.	(RANDOM JOINT SPACING, IF ANY:)	
* 4.	SKEWNESS OF JOINTS (ft/lane)		[<u>O.0]</u>
* 5.	TRANSVERSE CONTRACTION JOINT LOAD TRANSFER SYSTEM Round Dowels	. <u>1</u> . 2	<u>[</u>]
* 6.	ROUND DOWEL DIAMETER (Inches)		(L.50)
* 7.	DOWEL SPACING (Inches)		[12.]
8.	DISTANCE OF NEAREST DOWEL FROM OUTSIDE LANE-SHOULDER EDGE (Inches)		[<u>(b</u> 0]
9.	DOWEL LENGTH (Inches)		178.1
10.	DOWEL COATING Paint and/or Grease Plastic Monel Stainless Steel Epoxy Other (Specify)	. 2 . 3 . 4 . 5	仁丁
11.	METHOD USED TO INSTALL MECHANICAL LOAD TRANSF Preplaced on Baskets	. 1 . 2	口
12.	DOWEL ALIGNMENT CHECKED BEFORE PLACEMENT (Y/N	1)	门门
13.	DOWEL ALIGNMENT CHECKED AFTER PLACEMENT (Y/N)	1	[진]
	If Yes, describe method used (e.g. Pachometer, Ground Penetrating Radar)		

PORT	SPS-2 CONSTRUCTION DATA SHEET 16 CLAND CEMENT CONCRETE LAYERS-JOINT DATA CONT'D	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	1721 1051 1081			
* 1.	1. LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4) [\(\geqrig \)]					
* 2.	METHOD USED TO FORM TRANSVERSE JOINTS Sawed					
* 3.	TYPE OF LONGITUDINAL JOINT (BETWEEN LANES) Butt		[<u>2</u>]			
* 4.	TYPE OF SHOULDER-TRAFFIC LANE JOINT Butt		[<u>Z]</u>			
*5.	AVERAGE DEPTH OF SAWCUT, FROM MEASUREMENTS (Inches)					
* 6.	TIME INTERVAL BETWEEN CONCRETE PLACEMENT AND SAWCUT (HOURS) [
7.	TRANSVERSE JOINT SEALANT TYPE (AS BUILT) Preformed (Open Web) 1 Rubberize Asphalt	us Silicone 4	(<u>5</u>)			
TRANSVERSE JOINT SEALANT RESERVOIR (AS BUILT)						
8.	WIDTH, (Inches)	•••••	. <u>(0,38)</u>			
9.	DEPTH, (Inches)		12.751			
LONGITUDINAL JOINT SEALANT RESERVOIR (AS BUILT)						
10.	WIDTH, (Inches)	•••••	· [<u>3</u> 8]			
11.	DEPTH, (Inches)	•••••	. [2.15]			
12.	BETWEEN LANE TIE BAR DIAMETER (Inches)		(L. <u>5</u> 01			
13.	BETWEEN LANE TIE BAR LENGTH (Inches)		130.1			
14.	BETWEEN LANE TIE BAR SPACING (Inches)		<u>[30.0]</u>			
SHOULDER-TRAFFIC LANE JOINT SEALANT RESERVOIR (AS BUILT)						
15.	WIDTH, (Inches)		. [<u>3</u> 8]			
16.	16. DEPTH, (Inches)					

PREPARER N. Hunderson EMPLOYER NCE DATE 10-12-94

SPS-2 CONSTRUCTION DATA								
*1.	LAYER NUMBER (FROM CONS	STRUCTION DATA SHEET 4)		 [<u>3</u>]				
	MIX DESIGN (OVEN DRIED	WEIGHT - PER CUBIC YAR	D)					
*2.	Coarse Aggregate (Pound	is)	[_	17201				
* 3.	Fine Aggregate (Pounds))	[_	1430.1				
*4.	Cement (Pounds)		[_	399.1				
* 5.	Water (Pounds)			236.1				
* 6.	TYPE CEMENT USED (See (If Other, Speci	Cement Type Codes, Tabl fy Southwestern Type	e A.11) I/II Low AlKali)	(<u>55</u>)				
* 7.	ALKALI CONTENT OF CEME	NT, (PERCENT BY WEIGHT	OF CEMENT)	[<i>.5</i> 9]				
ADMIXTURES (PERCENT BY WEIGHT OF CEMENT)								
		TYPE CODE		AMOUNT				
*8.	ADMIXTURE #1	$[\underline{0} \cdot \underline{0}]$	(<u> </u>				
* 9.	ADMIXTURE #2	[<u>O</u> . <u>&</u>]	(: <u>099</u> 1				
*10.	ADMIXTURE #3	[]	(
(See Cement Admixture Codes, Table A.12) (If Other, Specify)								
AGGREGATE DURABILITY TEST RESULTS (SEE DURABILITY TEST TYPE CODES, TABLE A.13)								
	TYPE OF AGGREGATE	TYPE OF TEST	RESULTS					
11.	Coarse	[<u>0 </u>	[_32.0]					
12.	Coarse	[]	[]					
13.	Coarse	[]	[]					
14.	Coarse and Fine	[]	[]					

	SPS-2 CONSTRUCTION DATA SHEET 19	* STATE * SPS PI	CODE ROJECT CODE	[<u>0</u> <u>8</u>]
	PORTLAND CEMENT CONCRETE LAYERS MIXTURE DATA (CONTINUED)	* TEST	SECTION NO.	1151
* 1.	LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)			[_]
	COMPOSITION OF COARSE AGGREGATE		TYPE	PERCENT
* 2.			()	[] 00,1
* 3.			[_]	[]
* 4.			[]	[]
	Crushed Stone 1 Manufactured gravel Crushed Slag 4 Lightweight Other (Specify)	5		avel 3 oncrete 6
* 5.	GEOLOGIC CLASSIFICATION OF COARSE AGGREGATE (SEE GEOLOGIC CLASSIFICATION CODES, TAB	LE A.9)		[_ <u>\lambda</u> .]
COMPC	OSITION OF FINE AGGREGATE		TYPE	PERCENT
* 6.			[十]	[_00.]
* 7.			[]	[]
* 8.	·		[]	[]
	Natural Sand 1 Crushed, Manufactured Sand (From Crushed Grav Recycled Concrete 3 Other (Specify)			4
				(
9.	INSOLUBLE RESIDUE, PERCENT (ASTM D3042)			[N_·]
9. 10.		DATION O	F FINE AGGI	[<u>N_</u> .]
	GRADATION OF COARSE AGGREGATE 11. GRADATION OF COARSE AGGREGATE Sieve Size 3 Passing Sieve No. 2"		F FINE AGGI Passing 191 181 144 111	[N] REGATE
10.	GRADATION OF COARSE AGGREGATE 11. GRADATION OF COARSE AGGREGATE Sieve Size 3 Passing Sieve No. 2"	8 10 16 30 40 50	* Passing _ 9 ± _ 7 8 _ 4 4	[<u>N_</u> .] REGATE
10.	GRADATION OF COARSE AGGREGATE 11. GRADATION OF COARSE AGGREGATE Sieve Size \$ Passing 2"	8 10 16 30 40 50	* Passing _ 9 ± _ 7 8 _ 4 4	[N] REGATE (a)
10. BULK 12.	Sieve Size	8 10 16 30 40 50	* Passing _ 9 ± _ 7 8 _ 4 4	(

PORTLAND CEMENT CONCRETE LAYERS * SPS PROJECT CODE PLACEMENT DATA * TEST SECTION NO. 110-12-931 DATE PAVING OPERATIONS BEGAN (Month-Day-Year) ***1**. 110-12-931 *****2. DATE PAVING OPERATIONS COMPLETED (Month-Day-Year) *3. LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4) [3] *4. CONCRETE MIX PLANT AND HAUL Haul Distance (Mi) Time (Min) Plant 2 Plant 3 ()1PAVER TYPE Slip Form Paver.... 1 Side Form... 2 PAVER TYPE *****5. Other (Specify) _____ paver manufacturer and model number <u>CAT SF-550</u> 6. 7. SPREADER TYPE (if applicable) _____ SPREADER MANUFACTURER AND MODEL NUMBER GOMACO PS-60 8. [38.0] 9. WIDTH PAVED IN ONE PASS (Feet) 10. [Z]DOWEL PLACEMENT METHOD Dowel Bar Inserter (DBI).... 1 Dowel Basket.... 2 [Z8] NUMBER OF VIBRATORS 11. [L8] 12. VIBRATOR SPACING (Inches) $[\underline{},\underline{}]$ 13. DEPTH OF VIBRATORS BELOW SURFACE (Inches) 14. ADDITIONAL VIBRATION APPLIED ____

SPS-2 CONSTRUCTION DATA

SHEET 20

	SPS-2 CONSTRUCTION DATA SHEET 21 PORTLAND CEMENT CONCRETE LAYERS PLACEMENT DATA (CONTINUED)	* STATE CODE [08] * SPS PROJECT CODE [02] * TEST SECTION NO. [15]
1. (CONSOLIDATION OF MATERIALS Internal Vibrators 1 Vibrating Screeds. Rolling 4 Tamping 5 Other (Specify) 6	2 Troweling 3
2.		ine-Troweling 3
3.	Burlap Curing Blankets 2 Cot	[] [] [] [] [] [] [] [] [] [] [] [] [] [
4.	Broom 2 Ast	poved Float

PO	SPS-2 CONSTRUCTION DATA SHEET 22 RTLAND CEMENT CONCRETE SURFACE LAYER PROFILE DATA	* STATE CODE [O 8] * SPS PROJECT CODE [O 2] * TEST SECTION NO. [I 5]
1.	DATE PROFILE MEASURED (Month-Day-Year)	110-14-931
2.	PROFILOGRAPH TYPE California 1 Rainh	art 2 []
3.	PROFILE INDEX (Inches/Mile).	12.61
4.	INTERPRETATION METHOD Manual 1 Mechanical	2 Computer 3 []
5.	HEIGHT OF BLANKING BAND (Inches)	10.201
6.	CUTOFF HEIGHT (Inches)	· [1
7.	SURFACE PROFILE USED AS BASIS OF INCENTIVE PA	YMENT? (YES, NO) $[Y]$
8.	WAS SURFACE PROFILE CORRECTED BY DIAMOND GRIN	DING? (YES, NO)
	IF YES COMPLETE THE FOLLOWING:	
9.	DATE DIAMOND GRINDING OPERATIONS BEGAN (Month	-Day-Year) []
10.	DATE DIAMOND GRINDING OPERATIONS COMPLETED (M	(onth-Day-Year)[]
*11.	REASON FOR GRINDING Elimination of Faulting 1 Elimination of Improve Skid Resistance 3 Restoration of Transverse Drainage Slope 4 Correction of Construction Deficiencies 5 Other (Specify) 6	
12.	AVERAGE DEPTH OF CUT (Inches)	. []
13.	CUTTING HEAD WIDTH (Inches)	[]
14.	AVERAGE GROOVE WIDTH (Inches)	[·]
15.	AVERAGE SPACING BETWEEN BLADES (Inches)	[]

PREPARER Man Buss EMPLOYER CDOT DATE 5/24/194

SHEET 27	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	1081 1021 1151
		

rrovide any miscellaneous comments and notes concert may have an influence on the ultimate performance cause undesired performance differences to occur be	of the test sections tween test sections.	or which may Also include
any quality control measurements or data for whic forms. Provide an indication of the basis for su AASHTO, or Agency standard test designation.		
		
,		<u> </u>
PREPARER NACON EMPLOYER NEF	DATE	10-12-93

	GI	SPS-2 CONSTRUCTION DATA SHEET 2 COMETRIC, SHOULDER AND DRAINAGE INFORMATION	* SPS	E CODE PROJECT CODE SECTION NO.	[OB] [OZ] [ZZ]
*	1.	LANE WIDTH (Feet)			[12.]
	2.	MONITORING SITE LANE NUMBER (LANE 1 IS OUTSIDE LANE, NEXT TO SHOULD LANE 2 IS NEXT TO LANE 1, ETC.)	ER		[1.]
		SHOULDER DATA .		INSIDE SHOULDER	
*	3.	SHOULDER SURFACE TYPE Turf 1 Granular 2 Asphalt Concre Concrete 4 Surface Treatment 5 Other (Specify) 6	te 3	[<u>4</u> .]	[生.]
*	4.	TOTAL SHOULDER WIDTH (Feet)		[_4.]	[10.]
*	5.	PAVED SHOULDER WIDTH (Feet)		[_4.]	[_[0.]
	6.	SHOULDER BASE TYPE (CODES-TABLE A.6)		13 L.1	(<u>≥</u> ⊥.)
	7.	SHOULDER SURFACE THICKNESS (Inches)		[<u>8</u> .0]	[<u>8</u> .0]
	8.	SHOULDER BASE THICKNESS (Inches)		[_4.0]	[<u>4</u> . <u>0</u>]
*	9.	SUBSURFACE DRAINAGE TYPE No Subsurface Drainage 1 Longitudinal I Transverse Drains 3 Drainage Blanket Drainage Blanket with Longitudinal Drains Other (Specify) 7	. 4 🛚 🗸	. 2 Well System	<u>[</u> .]
*1	.0.	SUBSURFACE DRAINAGE LOCATION Continuous Along Test Section 1 Interms	ittent.	. 2	[].]
1	1.	DIAMETER OF LONGITUDINAL DRAINPIPES (Inches)			[_4.0]
1	.2.	SPACING OF LATERALS (Feet)			1250.1

SHEET 4	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	[00] [02] [22]
	52022011 110.	المستع سيك ا

*1 LAYER	*2 LAYER DESCRIPTION	*3 MATERIAL TYPE	*4]	*4 LAYER THICKNESSES (Inches)			
NUMBER	DESCRIPTION	CLASS	AVERAGE	MINIMUM	MAXIMUM	STD. DEV.	
1	SUBGRADE(7)	<u>[52]</u>					
2	[<u>U</u> <u>U</u>]	1241	[4.0]		'-		
3	1051	1311	[_4.0]				
4	<u>[03]</u>	(<u>0</u> 4)	[
5	[]	[]	[]				
6	[]	[]	[]				
7	[]	[]	[1				
8	[]	[]	[]				
9	[]	[]	[]				
10	[]	[].	[]				
L	<u> </u>				<u> </u>		

* 5	DEPTH BELOW SURFACE (Rock, Stone, Dense		(Feet)	[\sum_{\substack} \cdot -1
	(NOCK, Scotte, Delise	Juarel		

NOTES:

- 1. Layer 1 is the subgrade soil, the highest numbered layer is the pavement surface.
- 2. Layer description codes:

 Overlay............01 Base Layer......05 Porous Friction Course..09

 Seal/Tack Coat.......02 Subbase Layer.....06 Surface Treatment......10

 Original Surface.......03 Subgrade........07 Embankment (Fill)......11

 HMAC Layer (Subsurface).04 Interlayer......08
- 3. The material type classification codes are presented in Tables A.5, A.6, A.7 and A.8 of the Data Collection Guide for Long Term Pavement Performance Studies, dated January 17, 1990 (Appendix B of SPS-2 Data Collection Guide).
- 4. Enter the average thickness of each layer and the minimum, maximum and standard deviation of the thickness measurements, if known.

SPS-2 CONSTRUCTION DATA SHEET 5 LAYER THICKNESS MEASUREMENTS

* STATE CODE

* SPS PROJECT CODE * TEST SECTION NO.

LAYER THICKNESS MEASUREMENTS (Inches)

CHEET OF

ſ 	SHEET				
			LAYER THIC	KNESS (INCHE	S)
STATION NUMBER	OFFSET (Inches)	DENSE GRADED AGGREGATE BASE	PERMEABLE ASPHALT TREATED BASE	LEAN CONCRETE BASE	PCC SURFACE
0+00	$-\frac{9}{3}\frac{9}{6}$	-4:5	- 4·3		_ 8.6
192+85	- 3704 - 14	513134 431444	자 		
0+50	- 3 C	- 4 · (0	_ 4		_ 8 .8
193+35	- MH Q4 - H Q4	44.44.44.44.44.44.44.44.44.44.44.44.44.	- 15년32 - 15년32 - 15년32		
1+00	- = 2	- + -=	_ 4 .3		_ 8 .6
193+85	이 무지되는 게 구 이 작		1111 14444 13114	:_	 b b b b b in in in in c
1+50	- <u>5</u> 0	- 춫·은	_ + .골		
194+35	- 137494 - 1494		11111 14444		्। ऽ।वाव्यव्यव्य । । । । ।
2+00	- = 0	_ 5 .0		:_	
194+85		544415 	- 144 - 44 - 4 - 4		.
2+50	- <u>- 0</u>	- 2·8 - 2·4 - 3·7	- <u>5</u> : <u>9</u>		13.00 13.00 15.00
195+35		- 4 · 1 · 2 · 4 · 4	-4:3 -4:5 -2:5 -1:5 -1:5 -1:5 -1:5 -1:5 -1:5 -1:5 -1		
3+00	0				
195+85		12333 1233 14	- 4 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9		
LAYER NUMB	ER1	2	3		_4

¹ from Construction Data Sheet 4

SPS-2 CONSTRUCTION DATA
SHEET 5
LAYER THICKNESS MEASUREMENTS

* STATE CODE * SPS PROJECT CODE * TEST SECTION NO. [08] [02] [2]

LAYER THICKNESS MEASUREMENTS (Inches)

SHEET OF

	· 1 · · · · · · · · · · · · · · · · · ·	 			Sheel
			LAYER THIC	KNESS (INCHE	S)
STATION NUMBER	OFFSET (Inches)	DENSE GRADED AGGREGATE BASE	PERMEABLE ASPHALT TREATED BASE	LEAN CONCRETE BASE	PCC SURFACE
<u>3+5 0</u>	_ 3 6	- 3·9 - 3·5	<u>- 4:4</u> - 4:9	:-	- 8 ·5
196+35	0191218141 13141941 1-1-4-1	기541시카 기계제33세	-4.9 -4.5 -4.5 -4.3		
4+00	<u> </u>	-3.15	<u>4.5</u> 4.7	:	<u>-8.4</u>
196+35		- 5 - 2 5 5 5 5 5 5 5 5 5	51745551 444444 1 1 1 1		
<u>4+50</u>	- 3 6	$-\frac{4}{3} \cdot \frac{2}{9}$	- 4·6 4·7		-8.5
197+35		4 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	의구!의찌(m) - - - -		 CH3 CA CA E -PO E V
<u>5+00</u>	<u> </u>	- 3 · <u>0</u>	-4·5		- 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12
197+85	3 <u>6</u> 3 2 2 1 2 4 1 4				
+		:-	:-	:_	:
			==:=		:_
+			<u> ·-</u>	<u> </u>	
		:_	·_	:_	:_
				:_	:_
+		:	·_		
			:_	:_	:_
			·_		
LAYER NUMB	ER¹		3		4_

¹ from Construction Data Sheet 4

	SPS-2 CONSTRUCTION DATA SHEET 6	* STATE CODE * SPS PROJEC		[08]
	SUBGRADE PREPARATION	* TEST SECTI		
1.	SUBGRADE PREPARATION BEGAN (Month-Day-Year)		(OZ-	15-931
2.	SUBGRADE PREPARATION COMPLETED (Month-Day-Year)	108-0	23.931
	PRIMARY COMPACTION EQUIPMENT			,
3.	CODE TYPE			[<u>3]</u>
	COMPACTION EQUIPMENT TYPE CODES Sheepsfoot 1 Pneumatic Tired 2 Ste Single Drum Vibr 4 Double Drum Vibr Other (Specify) 6		dem 3	
4.	GROSS WEIGHT (Tons)			[_5.0]
			TYPE	PERCENT
5.	STABILIZING AGENT 1		[]	[<u>_</u> ½]
6.	STABILIZING AGENT 2		[_]	[]
	STABILIZING AGENT TYPE CODES Portland Cement 1 Lime 2 Fly Ash, Fly Ash, Class N 4 Other (Specify) 5	Class C 3		1
7.	TYPICAL LIFT THICKNESS (Inches) (For Fill Sections Only)			[<u>90.0</u>]
	NOTE: Density Data is recorded on Samp	oling Data Sh	eet 8-1	
3.	SIGNIFICANT EVENTS DURING CONSTRUCTION (DISRUE	PTIONS, RAIN,	EQUIPME	NT PROBLEMS,
			·····	

SPS-2 CONSTRUCTION DATA SHEET 7 CUT-FILL SECTION LOCATIONS

* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.

ORDER	*1 CUT-FILL ¹	REFERENCE PROJE	ECT STATION NUMBER	*4 TEST SECTION
OI DEAK	WI GOTTILL	*2 START	*3 END	NUMBER 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	7		5 + Q0 - 95 + 95 + + + + + +	

NOTES:

Indicate the type of subgrade section with one of the following: 1.

> Fill... 2 Cut... 1

A given Test Section No. will be repeated if both cut and fill 2. sections exist within the test section.

SPS-2 CONSTRUCTION DATA
SHEET 8
SUBGRADE EXCAVATION AND BACKFILLING SKETCH

* STATE CODE

* SPS PROJECT CODE

122

* TEST SECTION NO.

SEC 21 115 R664 1-800-922-1987 I-76 191+00 TO 205+00 177+85 192185

PREPARER N. HO MODIL EMPLOYER NEE

DATE _____

UNB	SPS-2 CONSTRUCTION DATA SHEET 9 OUND AGGREGATE BASE MATERIAL PLACEMENT	* STATE CODE [OS] * SPS PROJECT CODE [OZ] * TEST SECTION NO. [ZZ]
1.	UNBOUND BASE MATERIAL PLACEMENT BEGAN (Month-	Day-Year) [<u>08-04-93</u>]
2.	UNBOUND BASE MATERIAL PLACEMENT COMPLETED (Mon	nth-Day-Year) [<u>08-04-93</u>]
3.	LAYER NUMBER (From Sheet 4)	[<u>Z</u>]
	PRIMARY COMPACTION EQUIPMENT	
4.	CODE TYPE	[<u></u>
	COMPACTION TYPE CODES Pneumatic - Tired 1 Steel Wheel Tandem. Double Drum Vibr 4 Other (Specify) 5	2 Single Drum Vibr 3
5.	GROSS WEIGHT (Tons)	[_ <u>5</u> . <u>0</u>]
·6.	LIFT THICKNESSES	
	Nominal First Lift Placement Thickness (Inches	s) [_5. <u>0</u>]
	Nominal Second Lift Placement Thickness (Inche	es) []
	Nominal Third Lift Placement Thickness (Inches	s) []
	Nominal Fourth Lift Placement Thickness (Inches	es) []
	NOTE: Density Data is recorded on Sam	pling Data Sheet 8-1
7.	SIGNIFICANT EVENTS DURING CONSTRUCTION (DISRUETTE.)	•

SPS-2 CONSTRUCTION DATA SHEET 10 PLANT-MIXED ASPHALT BOUND LAYERS AGGREGATE PROPERTIES

* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.

L	· · · · · · · · · · · · · · · · · · ·		
* 1.	LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)		131
	COMPOSITION OF COARSE AGGREGATE	TYPE	PERCENT
* 2.	•	[]	[]
* 3.		[]	[]
* 4.	Crushed Stone 1 Manufactured gravel Crushed Slag 4 Manufactured Lightweig Other (Specify)	[] 2 Crushed cht5	[] Gravel 3
	COMPOSITION OF FINE AGGREGATE	TYPE	PERCENT
* 5.		[_]	[]
* 6.		[_]	[]
* 7.		[_]	[]
	Natural Sand 1 Crushed or Manufactured Sand (From Crushed Gra Recycled Concrete 3 Other (Specify)		
* 8.	TYPE OF MINERAL FILLER Stone Dust 1 Hydrated Lime 2 Port: Fly Ash 4 Other (Specify) 5		[<u></u>]
	BULK SPECIFIC GRAVITIES:		
* 9.	COARSE AGGREGATE (AASHTO T85 or ASTM C127)		[]
*10.	FINE AGGREGATE (AASHTO T84 or ASTM C128)		[]
*11.	MINERAL FILLER (AASHTO T100 or ASTM D854)		[]
*12.	AGGREGATE COMBINATION (CALCULATED)		[]
13.	EFFECTIVE SPECIFIC GRAVITY OF AGGREGATE COMBINE (CALCULATED)	NATION	[]
	AGGREGATE DURABILITY TEST RESULTS (CODES, TAB	LE A.13)	
14. 15.	TYPE OF AGGREGATE Coarse	TYPE OF TEST	RESULTS []
16.	Coarse Coarse	<u> </u>	
17.	Coarse and Fine - Combined		
18.	POLISH VALUE OF COARSE AGGREGATES SURFACE LAYER ONLY (AASHTO T279, ASTM D3319)	[]
PREPA	RER Nollison EMPLOYER NE	DATE	8-20-93

	SPS-2 CONSTRUCTION DATA SHEET 11 PLANT-MIXED ASPHALT BOUND LAYERS ASPHALT CEMENT PROPERTIES	* STATE CODE * SPS PROJECT CO * TEST SECTION N	·
*1.	LAYER NUMBER (FROM CONSTRUCTION SHEET 4)		<u>[3]</u>
*2.	ASPHALT GRADE (SEE ASPHALT CODE SHEET, TABLE (IF OTHER, SPECIFY)	A.16)	<u>(Ó3)</u>
* 3.	SOURCE (SEE SUPPLY CODE SHEET, TABLE A.14) (IF OTHER, SPECIFY)		1761
4.	SPECIFIC GRAVITY OF ASPHALT CEMENT (AASHTO T228)		[]
	ORIGINAL ASPHALT CEMENT PROPERTIES (If ava	ilable from suppl	lier)
5.	VISCOSITY OF ASPHALT AT 140°F (Poises) (AASHTO T202)	[1
6.	VISCOSITY OF ASPHALT AT 275°F (Centistokes) (AASHTO T202)	[
7.	PENETRATION AT 77°F (AASHTO T49) (Tenths of a (100 g., 5 sec.)	. mm)	[]
	ASPHALT MODIFIERS (SEE TYPE CODE, A.15)	TYPE	QUANTITY (%)
8.	MODIFIER #1	[]	[]
9.	MODIFIER #2 (IF OTHER, SPECIFY)		[]
LO.	DUCTILITY AT 77°F (cm) (AASHTO T51)		[1
11.	DUCTILITY AT 39.2°F (cm) (AASHTO T51)		[1
L2.	TEST RATE FOR DUCTILITY MEASUREMENT AT 39.2°f (cm/Min)		[]
L3.	PENETRATION AT 39.2°F (AASHTO T49) (Tenths of (200 g., 60 sec.)	amm)	[]
L4.	RING AND BALL SOFTENING POINT (AASHTO T53) (°F)	[]
	NOTE: If emulsified or cutback asphalt was us spaces for "Original Asphalt Cement Pro		the .

	SPS-2 CONSTRUCTION DATA SHEET 12 PLANT-MIXED ASPHALT BOUND LAYERS MIXTURE PROPERTIES	* STATE CODE [O8] * SPS PROJECT CODE [O2] * TEST SECTION NO. [Z2]
*1.	LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)	<u>(3)</u>
*2.	TYPE OF SAMPLES COMPACTED IN LABORATORY 1 TAKEN FROM T	EST SECTION 2
*3.	MAXIMUM SPECIFIC GRAVITY (NO AIR VOIDS) (AASHTO T209 OR ASTM D2041)	[]
	BULK SPECIFIC GRAVITY (ASTM D1188)	•
	MEAN [] MINIMUM []	NUMBER OF TESTS [] MAXIMUM [] STD. DEV. []
	ASPHALT CONTENT (PERCENT WEIGHT OF TOTAL MIX	- AASHTO T164 OR ASTM D2172)
	MEAN [:] MINIMUM [:]	NUMBER OF SAMPLES [] MAXIMUM [] STD. DEV. []
- •	PERCENT AIR VOIDS	
	MEAN [:] MINIMUM [:]	NUMBER OF SAMPLES []' MAXIMUM [] STD. DEV. []
*13 <u>.</u> _	VOIDS IN MINERAL AGGREGATE (Percent)	[]
*14.	EFFECTIVE ASPHALT CONTENT (Percent)	[]
*15.	MARSHALL STABILITY (1bs) (AASHTO T245 OR ASTM	[]
*16.	NUMBER OF BLOWS	[]
*17.	MARSHALL FLOW (Hundredths of an Inch) (AASHTO T245 OR ASTM D1559)	[]
*18.	HVEEM STABILITY (AASHTO T246 OR ASTM D1561)	[]
*19.	HVEEM COHESIOMETER VALUE (GRAMS/25mm of Width (AASHTO T246 OR ASTM 1561)	i
*20.	TYPE OF ANTISTRIPPING AGENT USED (SEE TYPE CODES, TABLE A.21) OTHER (SPEC	[]
*21.	ANTISTRIPPING AGENT USED: LIQUID 1 SO	DLID 2 [_]
*22.	AMOUNT OF ANTISTRIPPING AGENT USED (Percent)	[]
	(LIQUID: enter percent of asphalt cement aggregate weight.)	weight SOLID: enter percent of
PREPA	RER Nanduson EMPLOYER NCE	DATE 8-20-93

	SPS-2 CONSTRUCTION DATA SHEET 13 PLANT-MIXED ASPHALT BOUND LAYERS PLACEMENT DATA	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	[<u>08</u>] [<u>0</u> 2] [<u>2</u> 2]
·1.	DATE PAVING OPERATIONS BEGAN (Month-Day-Year)	(<u>0</u> 8	<u>-23-93</u> 1
-2.	DATE PAVING OPERATIONS COMPLETED (Month-Day-Y	ear) [<u>DS</u>	-23-931
+3	ASPHALT CONCRETE PLANT AND HAUL		
	Type Name Haul Distan	ce (Mi) Time (Min)	Layer Number
	Plant 1 [Z] Dahlia Plant [_8	<u>[1.0]</u>	<u>[_3</u>]
	Plant 2 [_] [_] []	[]
4.	Plant Type: Batch 1 Drum Mix 2 O MANUFACTURER OF ASPHALT CONCRETE PAVER	<u> </u>	(nox 657
5.	MODEL DESIGNATION OF ASPHALT CONCRETE PAVER		,12 = ,
6.	SINGLE PASS LAYDOWN WIDTH (Feet)		(135)
7.	PATB PLACEMENT LIFTS: Layer Number		[_3]
	Nominal First Lift Placement Thickness	•	[]
	Nominal Second Lift Placement Thickness	(Inches)	[]
	Nominal Third Lift Placement Thickness	(Inches)	[]
8.	SIGNIFICANT EVENTS DURING CONSTRUCTION (dis	ruptions, rain, equ	nip. problems,
		·	

SPS-2 CONSTRUCTION DATA * STATE CODE * SPS PROJECT CODE SHEET 14 PLANT-MIXED ASPHALT BOUND LAYERS

	COMPACTION DATA	* TEST SECTION NO	iŽZi
*1. *2. *3.	DATE PAVING OPERATIONS BEGAN (Month-Day DATE PAVING OPERATIONS COMPLETED (Month LAYER NUMBER	-Year) (<u>O</u>)	2-13-9- 2-23-13 13
*4.	MIXING TEMPERATURE (*F)		1225.
5. ROLI	LAYDOWN TEMPERATURES (°F) Mean	Number of Tests	<u>[3].</u>

KULI	OLLER DATA							
	Roller Code #	Roller Description	Gross Wt (Tons)	Tire Press. (psi)	Freque		itude (ches)	Speed (mph)
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	A B C D E F G H I J K L M N O P	Steel-Whl Tandem Steel-Whl Tandem Steel-Whl Tandem Steel-Whl Tandem Pneumatic-Tired Pneumatic-Tired Pneumatic-Tired Pneumatic-Tired Single-Drum Vibr. Single-Drum Vibr. Single-Drum Vibr. Double-Drum Vibr. Double-Drum Vibr. Double-Drum Vibr. Double-Drum Vibr.	<u>5</u> . <u>0</u>					
22	Q	Other						
	COMPAC	IION DATA	First Lif	t Second	Lift I	Third Lift	Four	th Lift
	BREAKDO Roller Covera	Code (A-Q)	<u>A</u> Z	·				
	INTERM Roller Covera	Code (A-Q)						
27 28	FINAL Roller Covera	Code (A-Q) ges			_			
30	Compac	mperature (°F) ted Thickness (In) Period (Days)	- A.	<u> </u>		·	-	

	PO	SPS-2 CONSTRUCTION DATA SHEET 15 RTLAND CEMENT CONCRETE LAYERS-JOINT DATA	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	[<u>0</u> 8] [<u>0</u> 2]
*	1.	LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)		(4)
*	2.	AVERAGE CONTRACTION JOINT SPACING (Feet)		1_15.01
	3.	(RANDOM JOINT SPACING, IF ANY:)	/
*	4.	SKEWNESS OF JOINTS (ft/lane)		(<u>0.0</u>)
*	5.	TRANSVERSE CONTRACTION JOINT LOAD TRANSFER SYS Round Dowels	. 1	[上]
*	6.	ROUND DOWEL DIAMETER (Inches)		[1.25]
*	7.	DOWEL SPACING (Inches)		[<u>LZ.</u>]
	8.	DISTANCE OF NEAREST DOWEL FROM OUTSIDE LANE-SHOULDER EDGE (Inches)		[_ [0.0]
	9.	DOWEL LENGTH (Inches)		<u>[8.1</u>
1	LO.	DOWEL COATING Paint and/or Grease Plastic Monel Stainless Steel Epoxy Other (Specify)	. 2 . 3 . 4 . 5	(土)
1	11.	METHOD USED TO INSTALL MECHANICAL LOAD TRANSFI Preplaced on Baskets Mechanically Installed Other (Specify)	. 1	[上]
1	L2.	DOWEL ALIGNMENT CHECKED BEFORE PLACEMENT (Y/N))	[7]
1	L3.	DOWEL ALIGNMENT CHECKED AFTER PLACEMENT (Y/N)		[<u>N</u>]
		If Yes, describe method used (e.g. Pachometer Ground Penetrating Radar)		

SPS-2 CONSTRUCTION DATA SHEET 16 PORTLAND CEMENT CONCRETE LAYERS-JOINT DATA CONT'D	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	[08] [08]
* 1. LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)		(4)
* 2. METHOD USED TO FORM TRANSVERSE JOINTS Sawed		、门
* 3. TYPE OF LONGITUDINAL JOINT (BETWEEN LANES) Butt		[<u>2</u>]
* 4. TYPE OF SHOULDER-TRAFFIC LANE JOINT Butt		[<u>Z</u>]
*5. AVERAGE DEPTH OF SAWCUT, FROM MEASUREMENTS (I	nches)	<u>[3.70]</u>
*6. TIME INTERVAL BETWEEN CONCRETE PLACEMENT AND	SAWCUT (HOURS)	[6.]
7. TRANSVERSE JOINT SEALANT TYPE (AS BUILT) Preformed (Open Web) 1 Rubberize Asphalt	us Silicone 4	(<u>ව</u> ා
TRANSVERSE JOINT SEALANT RESERVOIR (AS BUILT)		
8. WIDTH, (Inches)		· [<u>38</u>]
9. DEPTH, (Inches)		. [2.75]
LONGITUDINAL JOINT SEALANT RESERVOIR (AS BUILT)		
10. WIDTH, (Inches)	• • • • • • • • • • • • • • • • • • • •	· [<u>3</u>]
11. DEPTH, (Inches)		. [3.75]
12. BETWEEN LANE TIE BAR DIAMETER (Inches)		[<u>625]</u>
13. BETWEEN LANE TIE BAR LENGTH (Inches)		<u>[30.1</u>
14. BETWEEN LANE TIE BAR SPACING (Inches)	`	[<u>30.0]</u>
SHOULDER-TRAFFIC LANE JOINT SEALANT RESERVOIR (AS	BUILT)	
15. WIDTH, (Inches)	• • • • • • • • • • • • • • • • • • • •	[39]
16. DEPTH, (Inches)	• • • • • • • • • • • • • • • • • • • •	(2.75)

PREPARER N. Dendelson EMPLOYER NCE DATE 9-4-93

PO	SPS-2 CONSTRUCTION SHEET 18 RTLAND CEMENT CONCRETE L		* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	[<u>08</u>] [<u>0</u> 2] [<u>2</u> 2]
*1.	LAYER NUMBER (FROM CONST		D)	<u>(4-</u>)
*2. *3. *4.	Coarse Aggregate (Pounds) Fine Aggregate (Pounds) Cement (Pounds)		·····.[_	935.1
* 5.	Water (Pounds)			•
* 6.	TYPE CEMENT USED (See Control of Other, Specific	ement Type Codes, Table y Southurstyn Type:	E/II Low Alkali	<u>[55]</u>
* 7.	ALKALI CONTENT OF CEMEN	I, (PERCENT BY WEIGHT (OF CEMENT)	[5]
ADMIX:	TURES (PERCENT BY WEIGHT	OF CEMENT)		
		TYPE CODE		AMOUNT
*8.	ADMIXTURE #1	[<u>10</u> . <u>0</u>]		<u> </u>
* 9.	ADMIXTURE #2	[<u>광</u> . <u>ㅇ</u>]		[025
*10.	ADMIXTURE #3	[]?WRA		<u>0.3i</u>
	-	ture Codes, Table A.12	- "	
AGGRE	GATE DURABILITY TEST RES			
	TYPE OF AGGREGATE	TYPE OF TEST	RESULTS	
11.	Coarse	[O T]	[<u>3Z.0</u>]	
12.	Coarse	. []	[]	
13.	Coarse	[]	[]	
14.	Coarse and Fine	[]	[]	

* 1. * 2. * 3. * 4.	SPS-2 CONSTRUCTION DATA SHEET 19 PORTLAND CEMENT CONCRETE LAYERS MIXTURE DATA (CONTINUED) LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4 COMPOSITION OF COARSE AGGREGATE	*	SPS P	CODE ROJECT SECTION		[08] [02] [22] [22] PERCENT [100]
	Crushed Stone 1 Manufactured gravel Crushed Slag 4 Lightweight Other (Specify)			Crushed		el 3 crete 6
* 5.	GEOLOGIC CLASSIFICATION OF COARSE AGGREGATE (SEE GEOLOGIC CLASSIFICATION CODES, TA	ABLE	A.9)			[<u>N</u> .]
COMPO	SITION OF FINE AGGREGATE			TYPE		PERCENT
* 6.				[]		1700.1
* 7.				[_]		[]
* 8.				[_]		[]
9.	Natural Sand 1 Crushed, Manufactured Sand (From Crushed Grand Recycled Concrete 3 Other (Specify) INSOLUBLE RESIDUE, PERCENT (ASTM D3042)				.2	4 [
10.	GRADATION OF COARSE AGGREGATE 11. GR	RADA:	rion c	F FINE	AGGRE	GATE
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	o. 8 o. 10 o. 30 o. 40	0 6 0 0	<u> </u>	于 1014 王	o
BULK	SPECIFIC GRAVITIES:					
12.	Coarse Aggregate (AASHTO T85 or ASTM C127)					12.7301
13.	Fine Aggregate (AASHTO T84 or ASTM C128)					12-6001
PREPA	ARER N. Genderson EMPLOYER NCE	<u> </u>		_ DA	TE	9-4-93

		* TEST SECTION NO.	[일을]
*1.	DATE PAVING OPERATIONS BEGAN (Month-Day-Year)	109	-03-93
*2.	DATE PAVING OPERATIONS COMPLETED (Month-Day-Yea	ar) (<u>0</u> 9	-03-931
*3.	LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)		(4)
* 4.	CONCRETE MIX PLANT AND HAUL		
	Plant 1 Castle Rock [Plant 2 Plant 3	Time	(Min) 1 0 1 - 1 1
* 5.	PAVER TYPE Slip Form Paver 1 Side Form 2 Other (Specify)	3	ſĹ
6.	paver manufacturer and model number	co PS-60	
7.	SPREADER TYPE (if applicable)		
8.	spreader manufacturer and model number <u>Cate</u>	rpillar SF-5.	50
9.	WIDTH PAVED IN ONE PASS (Feet)		138.0
10.	DOWEL PLACEMENT METHOD Dowel Bar Inserter (DBI) 1 Dowel Bask	et 2	[2
11.	NUMBER OF VIBRATORS		[<u>26</u>
12.	VIBRATOR SPACING (Inches)	•	[] 8
13.	DEPTH OF VIBRATORS BELOW SURFACE (Inches)		<u>[_ (e.o</u>
14.	ADDITIONAL VIBRATION APPLIED		

SPS-2 CONSTRUCTION DATA SHEET 20

Burlap-Polyethylene Blanket... 5

Cotton Mat Curing..... 6

SPS-2 CONSTRUCTION DATA SHEET 21 PORTLAND CEMENT CONCRETE LAYERS PLACEMENT DATA (CONTINUED)	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	[<u>0</u> <u>8</u>]
1. CONSOLIDATION OF MATERIALS Internal Vibrators 1 Vibrating Screeds. Rolling 4 Tamping 5 Other (Specify) 6	2 Troweling 3	[]
2. FINISHING Screeding 1 Hand-Troweling 2 Mach Other (Specify) 4 1, 2, 3	ine-Troweling 3	[4]

1	Waterproof Paper Blankets White Polyethylene Sheeting Other (Specify)	3 4	Нау	7
	ING Tine Broom Burlap Drag	2	Grooved Float	5

Membrane Curing Compound..... 1 Burlap Curing Blankets..... 2

3. CURING

	PO	SPS-2 CONSTRUCTION DATA SHEET 22 RTLAND CEMENT CONCRETE SURFACE LAYER PROFILE DATA	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	[<u>0</u> 8] [<u>0</u> 2] [<u>2</u>]
١	1.	DATE PROFILE MEASURED (Month-Day-Year)	109-0	28 - 931
	2.	PROFILOGRAPH TYPE California 1 Rainha	art 2	[_]
	3.	PROFILE INDEX (Inches/Mile).		[101]
	4.	INTERPRETATION METHOD Manual 1 Mechanical	2 Computer 3	[]
	5.	HEIGHT OF BLANKING BAND (Inches)		(<u>0.20</u>)
	6.	CUTOFF HEIGHT (Inches)	,	[]
	7.	SURFACE PROFILE USED AS BASIS OF INCENTIVE PA	YMENT? (YES, NO)	[<u>Y</u>]
	8.	WAS SURFACE PROFILE CORRECTED BY DIAMOND GRIND	DING? (YES, NO)	[]
		IF YES COMPLETE THE FOLLOWING:		
	9.	DATE DIAMOND GRINDING OPERATIONS BEGAN (Month	-Day-Year) [<u> </u>]
	10.	DATE DIAMOND GRINDING OPERATIONS COMPLETED (M	onth-Day-Year)[1
*	11.	REASON FOR GRINDING Elimination of Faulting 1 Elimination of Improve Skid Resistance 3 Restoration of Transverse Drainage Slope 4 Correction of Construction Deficiencies 5 Other (Specify) 6		[_].
	12.	AVERAGE DEPTH OF CUT (Inches)		[]
	13.	CUTTING HEAD WIDTH (Inches)	[]]
	14.	AVERAGE GROOVE WIDTH (Inches)		[]
	15	AVERAGE SPACING BETWEEN BIADES (Inches)		1.1

PREPARER Mahal Boss EMPLOYER COOT DATE 5/24/94

SPS-2 C	ONSTRUCTION DA	ATA		
	SHEET 27			
MISCELLANEOUS	CONSTRUCTION	NOTES	AND	COMMENTS

* SPS PROJECT CODE

* TEST SECTION NO.

may have an influence on the ultimate performance of the test sections or which may cause undesired performance differences to occur between test sections. Also include any quality control measurements or data for which space is not provided on other
forms. Provide an indication of the basis for such measurements, such as an ASTM, AASHTO, or Agency standard test designation.
,

PREPARER Nobenderson EMPLOYER NCE

DATE 9-3-93

G	SPS-2 CONSTRUCTION DATA SHEET 2 EOMETRIC, SHOULDER AND DRAINAGE INFORMATION	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
* 1.	LANE WIDTH (Feet)		[_[2.]
2.	MONITORING SITE LANE NUMBER (LANE 1 IS OUTSIDE LANE, NEXT TO SHOULD LANE 2 IS NEXT TO LANE 1, ETC.)	ER	[上.]
	SHOULDER DATA	INSIDE SHOULDER	OUTSIDE SHOULDER
* 3.	SHOULDER SURFACE TYPE Turf 1 Granular 2 Asphalt Concre Concrete 4 Surface Treatment 5 Other (Specify) 6	te 3 [<u>4</u> .]	[4.]
* 4.	TOTAL SHOULDER WIDTH (Feet)	[_4.1	[10.]
* 5.	PAVED SHOULDER WIDTH (Feet)	[_4.]	$[\underline{10}.]$
6.	SHOULDER BASE TYPE (CODES-TABLE A.6)		[<u>Z</u>].]
7.	SHOULDER SURFACE THICKNESS (Inches)		[_]]
8.	SHOULDER BASE THICKNESS (Inches)	[<u>0</u> . <u>0</u>]	[<u>0</u> . <u>0</u>]
* 9.	SUBSURFACE DRAINAGE TYPE No Subsurface Drainage l Longitudinal D Transverse Drains 3 Drainage Blanket Drainage Blanket with Longitudinal Drains Other (Specify) 7	4 Well System	[<u>1</u> .]
*10.		ttent 2	[<u>₩</u> ·]
11.	DIAMETER OF LONGITUDINAL DRAINPIPES (Inches)		[_ 1/2]
12.	SPACING OF LATERALS (Feet)		[_ <u>\lambda</u>]

SPS-2	CC	ONSTRUCTION	DATA
	9	SHEET 4	
LAYI	R	DESCRIPTIO	NS

* SPS PROJECT CODE

* TEST SECTION NO.

*1	*2 LAYER	*3 MATERIAL			KNESSES (In	ches)
LAYER NUMBER	DESCRIPTION	TYPE CLASS	AVERAGE	MINIMUM	MAXIMUM	STD. DEV.
1	SUBGRADE(7)	1591				10.10.33
2	[03]	1041	[_JL.Q]			
3	[]	[]	[]			
4	[]	[]	[]			
5	[]	[]	[]			
6	[]	[]	[]			
7	[]	[]	[]			
8	[]	[]	[]			
9	[]	[]	[]			
10	[]	[]	[]			

* 5	DEPTH	BELOW	SURFACE	TO	"RIGID"	LAYER	(Feet)
	(Rock,	Stone	e, Dense	Sha	ale)		

[_ N · _]

NOTES:

- Layer 1 is the subgrade soil, the highest numbered layer is the pavement 1. surface.
- 2. Layer description codes: Overlay......01 Base Layer......05 Porous Friction Course..09 Seal/Tack Coat......02 Subbase Layer....06 Surface Treatment.....10 Original Surface......03 Subgrade.....07 Embankment (Fill).....11 HMAC Layer (Subsurface).04 Interlayer......08
- The material type classification codes are presented in Tables A.5, A.6, A.7 and A.8 of the Data Collection Guide for Long Term Pavement Performance Studies, dated January 17, 1990 (Appendix B of SPS-2 Data Collection Guide).
- Enter the average thickness of each layer and the minimum, maximum and standard deviation of the thickness measurements, if known.

SPS-2 CONS	TRUCTION DATA
SHE	ET 5
LAYER THICKNES	S MEASUREMENTS

* SPS PROJECT CODE * TEST SECTION NO.

LAYER THICKNESS MEASUREMENTS (Inches)

SHEET

		SHEET					
		LAYER THICKNESS (INCHES)					
STATION NUMBER	OFFSET (Inches)	DENSE GRADED AGGREGATE BASE	PERMEABLE ASPHALT TREATED BASE	LEAN CONCRETE BASE	PCC SURFACE		
0+00	$-\frac{\mathcal{O}}{3}$		·_		12.0 11.9		
222+00	3704				1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
0+50	0				11.7		
222†50	37041				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
L+00	0				11.6		
223+00							
L+5 0	- 30				구 수 : +		
223 1 50	370 1-04 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				1 · · · · · · · · · · · · · · · · · · ·		
Z+00	$-\frac{0}{3}$				11.8		
224+00	- 3 - 3 - 1 - 1 - 4 - 1 - 4				+ 1 · 8 + 1 · 9 + 1 · 9 + 1 · 2 · 0		
Z+50	$-\frac{0}{300}$				11.3		
224+50	3704 				11.3 11.3 11.9 11.0		
3+00			·_	'	11.4		
225+00	- 37 - 37 - 4 - 4 - 4				1111 1111 1111 1111 1111 1111 1111 1111 1111		
LAYER NUMB	ER1				_2		
							

¹ from Construction Data Sheet 4

SPS-2 CONSTRUCTION DATA SHEET 5 LAYER THICKNESS MEASUREMENTS

* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.

LAYER THICKNESS MEASUREMENTS (Inches)

SHEET

	γ				SHEET
		LAYER THICKNESS (INCHES)			
STATION NUMBER	OFFSET (Inches)	DENSE GRADED AGGREGATE BASE	PERMEABLE ASPHALT TREATED BASE	LEAN CONCRETE BASE	PCC SURFACE
3+50	$-\frac{Q}{3}\frac{Q}{6}$:-			++:=
725150	3704 1111				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4+00	<u> </u>	:-	:-		11.5
226+00					1-1-1-1-1 1-1-1-1-1 1-1-1-1-1-1-1-1-1-1
4+50	$-\frac{0}{3}$				12.3
ZZ6150					11111111111111111111111111111111111111
<u>5+00</u>	<u> </u>	:_	:	:	<u> </u>
227+00	3 1 1 1 1 1 1 1 1 1	:=			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
+		:	:	:	:-
		:_			
		· ·			
+		:	:_		:_
		:	:_	:_	:_
+			•	•	
		:	:		:_
				:	
LAYER NUMBE	IR ¹				

¹ from Construction Data Sheet 4

 SHEET 6	* SP	CATE CODE PS PROJEC EST SECTI	T CODE	[<u>08]</u> [<u>0</u> 2] [<u>5</u> T]
SUBGRADE PREPARATION BEGAN (Month-Day-Year)			10Z-	20-931
SUBGRADE PREPARATION COMPLETED (Month-Day-Year))		107-	<u> 25-931</u>
PRIMARY COMPACTION EQUIPMENT				
CODE TYPE				(<u>3</u>)
COMPACTION EQUIPMENT TYPE CODES Sheepsfoot 1 Pneumatic Tired 2 Stee Single Drum Vibr 4 Double Drum Vibr Other (Specify) 6	5	•	dem 3	
GROSS WEIGHT (Tons)				<u>[5.0]</u>
			TYPE	PERCENT
STABILIZING AGENT 1			[_]	[_ <u>~</u>]
STABILIZING AGENT 2			[_]	[]
STABILIZING AGENT TYPE CODES Portland Cement 1 Lime 2 Fly Ash, 6 Fly Ash, Class N 4 Other (Specify) 5				
TYPICAL LIFT THICKNESS (Inches) (For Fill Sections Only)			ı	[/44.0]
NOTE: Density Data is recorded on Samp	ling	Data Sh	eet 8-1	
SIGNIFICANT EVENTS DURING CONSTRUCTION (DISRUP	TION	s, RAIN,	EQUIPME	NT PROBLEMS,

SPS-2 CONSTRUCTION DATA SHEET 7 CUT-FILL SECTION LOCATIONS * STATE CODE

* SPS PROJECT CODE

* TEST SECTION NO.

ORDER	*1 CUT-FILL1	REFERENCE PROJE	+/ meem enemiou		
OKDEK	VI COI-LITT.	*2 START	*3 END	*4 TEST SECTION NUMBER ?	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	2		5 + O O O O O O O O O O O O O O O O O O		

NOTES:

1. Indicate the type of subgrade section with one of the following:

> Fill... 2 Cut... 1

A given Test Section No. will be repeated if both cut and fill 2. sections exist within the test section.

SPS-2 CONSTRUCTION DATA
SHEET 8
SUBGRADE EXCAVATION AND BACKFILLING SKETCH

* STATE CODE

* SPS PROJECT CODE

102

* TEST SECTION NO.

SEC 21 TIS R66W PLASTIC UNDERDAME Edition of Citizen 11A 225 11 41 8554 14 27 11 10 10 1-17-PS -534-6700 Mary HR 1-76 219+00 TO 233+00 222+00 227100

PREPARER N. NO COLONS ON EMPLOYER NEE

DATE

	SPS-2 CONSTRUCTION DATA SHEET 15 PORTLAND CEMENT CONCRETE LAYERS-JOINT DATA	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	[08] [08]
* 1	. LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)		[<u>2</u>]
* 2	. AVERAGE CONTRACTION JOINT SPACING (Feet)		[_15.0]
3	. (RANDOM JOINT SPACING, IF ANY:)	
* 4	. SKEWNESS OF JOINTS (ft/lane)		[<u>O</u> . <u>O</u>]
* 5	. TRANSVERSE CONTRACTION JOINT LOAD TRANSFER SYS Round Dowels	. 1	[_]
* 6.	. ROUND DOWEL DIAMETER (Inches)		1.501
¥ 7.	. DOWEL SPACING (Inches)		[12.]
8.	DISTANCE OF NEAREST DOWEL FROM OUTSIDE LANE-SHOULDER EDGE (Inches)		[_ <u>le.0</u>]
9.	DOWEL LENGTH (Inches)		[18.]
10.	DOWEL COATING Paint and/or Grease Plastic Monel Stainless Steel Epoxy Other (Specify)	2 3 4 5	<u>[_]</u>
11.	METHOD USED TO INSTALL MECHANICAL LOAD TRANSFE Preplaced on Baskets	1 2	[<u>]</u>]
12.	DOWEL ALIGNMENT CHECKED BEFORE PLACEMENT (Y/N)	1	$(\underline{\chi})$
13.	DOWEL ALIGNMENT CHECKED AFTER PLACEMENT (Y/N)		[<u>√</u>]
	If Yes, describe method used (e.g. Pachometer, Ground Penetrating Radar)		

r			
	SPS-2 CONSTRUCTION DATA SHEET 16	* STATE CODE * SPS PROJECT CODE	[8]
PORT	LAND CEMENT CONCRETE LAYERS-JOINT DATA CONT'D		
			······································
* 1.	LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)		[<u>Z]</u>
* 2.	METHOD USED TO FORM TRANSVERSE JOINTS Sawed		[_]
	Plastic Insert 2		
	Other (Specify)	4	
* 3.	TYPE OF LONGITUDINAL JOINT (BETWEEN LANES)	alam 1 ml	[<u>Z</u>]
	Butt 1 Insert We Sawed Weakened Plane 2		
	Other (Specify)	4	
* 4.	TYPE OF SHOULDER-TRAFFIC LANE JOINT Butt	okamad Diama 2	[2]
	Sawed Weakened Plane 2		
	Other (Specify)	4	
* 5.	AVERAGE DEPTH OF SAWCUT, FROM MEASUREMENTS (1	nches)	[2.75]
*6.	TIME INTERVAL BETWEEN CONCRETE PLACEMENT AND	SAWCUT (HOURS)	[<u>4</u> .]
7.	Preformed (Open Web) 1 Rubberize		[<u>5</u>]
	Asphalt		
TRANS	VERSE JOINT SEALANT RESERVOIR (AS BUILT)		
8.	WIDTH, (Inches)	• • • • • • • • • • • • • • • • • • • •	. [<u>38</u>]
9.	DEPTH, (Inches)		· [<u>2.75]</u>
LONGI	TUDINAL JOINT SEALANT RESERVOIR (AS BUILT)		
10.	WIDTH, (Inches)	• • • • • • • • • • • • • • • • • • • •	. [<u>3 &</u>]
11.	DEPTH, (Inches)	• • • • • • • • • • • • • • • • • • • •	. [2.75]
12.	BETWEEN LANE TIE BAR DIAMETER (Inches)		[625]
13.	BETWEEN LANE TIE BAR LENGTH (Inches)		[<u>30.]</u>
14.	BETWEEN LANE TIE BAR SPACING (Inches)		[<u>30.0</u>]
SHOUL	DER-TRAFFIC LANE JOINT SEALANT RESERVOIR (AS 1	BUILT)	
15.	WIDTH, (Inches)		. [<u>38</u>]
16.	DEPTH, (Inches)	• • • • • • • • • • • • • • • • • • • •	. <u>[Z.75]</u>

PREPARER N. Hendelson EMPLOYER NCE DATE 7-26-93

PO	SPS-2 CONSTRUCTION SHEET 18 RTLAND CEMENT CONCRETE L		* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	·—— ·		
*1.	LAYER NUMBER (FROM CONS	TRUCTION DATA SHEET 4)		[2]		
	MIX DESIGN (OVEN DRIED	WEIGHT - PER CUBIC YARI))	,		
*2.	Coarse Aggregate (Pound	s)		[1770.]		
*3.	Fine Aggregate (Pounds)	• • • • • • • • • • • • • • • • • • • •	•••••	[1210.]		
*4.	Cement (Pounds)	• • • • • • • • • • • • • • • • • • • •	•••••	<u> </u>		
*5.	Water (Pounds)	• • • • • • • • • • • • • • • • • • • •		1_243.1		
* 6.	TYPE CEMENT USED (See Co	ement Type Codes, Table y <u>Sou-thwestern Typ</u>	e A.11) DE T/II LOW)	<u>[55]</u>		
* 7.	ALKALI CONTENT OF CEMEN	T, (PERCENT BY WEIGHT C	OF CEMENT)	[<u>59</u>]		
ADMIX'	ADMIXTURES (PERCENT BY WEIGHT OF CEMENT)					
		TYPE CODE		AMOUNT		
*8.	ADMIXTURE #1	[<u>10</u> . <u>0</u>]		[_1 <u>T</u> <u>3</u> . <u>0</u>]		
* 9.	ADMIXTURE #2	[<u>8.0</u>]		[5.6]		
*10.	ADMIXTURE #3	[] WRA		[_17.0]		
(See Cement Admixture Codes, Table A.12) (If Other, Specify)						
AGGREGATE DURABILITY TEST RESULTS (SEE DURABILITY TEST TYPE CODES, TABLE A.13)						
	TYPE OF AGGREGATE	TYPE OF TEST	<u>RESULTS</u>			
11.	Coarse #57	(<u>O</u> <u> </u>]	1_37.11			
12.	Coarse#4	[<u>Q</u> <u> </u>	[_ <u>39.9</u>]			
13.	Coarse	[]	[]			
14.	Coarse and Fine	[]	[]			

	SPS-2 CONSTRUCTION DATA SHEET 19	* STATE * SPS P	CODE ROJECT CODE	[<u>0</u> 2]
	PORTLAND CEMENT CONCRETE LAYERS MIXTURE DATA (CONTINUED)	* TEST	SECTION NO.	(<u>5</u> 9)
* 1.	LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)		[2]
	COMPOSITION OF COARSE AGGREGATE		TYPE	PERCENT
* 2. 7	#57		[]	[<u>55</u> .]
* 3.=	#4		[上]	1_45.1
* 4.			[_]	[]
	Crushed Stone 1 Manufactured gravel Crushed Slag 4 Lightweight Other (Specify)		Crushed Grav Recycled Cor	
* 5.	GEOLOGIC CLASSIFICATION OF COARSE AGGREGATE (SEE GEOLOGIC CLASSIFICATION CODES, TA	BLE A.9)		[<u> </u>
COMPO	SITION OF FINE AGGREGATE		TYPE	PERCENT
* 6.			[_]	[100.1
* 7.			[_]	[]
* 8.			[]	[]
	Natural Sand 1 Crushed, Manufactured Sand (From Crushed Gra Recycled Concrete 3 Other (Specify)			4
9.	INSOLUBLE RESIDUE, PERCENT (ASTM D3042)			[<u>N</u> ·]
10.	GRADATION OF COARSE AGGREGATE 11. GR	ADATION O	F FINE AGGRI	EGATE
BULK	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 10 0. 16 0. 30 0. 40	* Passing 97	
12.	Coarse Aggregate (AASHTO T85 or ASTM C127)			[<u>N</u>]
13.	Fine Aggregate (AASHTO T84 or ASTM C128)			[<u>N</u>]

PREPARER N CE DATE 7-26-93

	PORTLAND CEMENT CONCRETE LAYERS PLACEMENT DATA	* STATE CODE * SPS PROJECT COD * TEST SECTION NO	E [02]
*1.	DATE PAVING OPERATIONS BEGAN (Month-Day-Year)	ſΩ	7-24-931
ł2.	DATE PAVING OPERATIONS COMPLETED (Month-Day-Ye	ear) [<u>O</u>	7-24-931
₹3.	LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)		[2]
4.	CONCRETE MIX PLANT AND HAUL		
	Plant 1 Plant 2 Plant 3 Name Haul Dista	ance (Mi) Tim	<u>le (Min)</u> . ⊥5]]
*5.	PAVER TYPE Slip Form Paver 1 Side Form 2 Other (Specify)	3	[<u> </u>]
6.	paver manufacturer and model number <u>Caterp</u>	illar SF550	
7.	SPREADER TYPE (if applicable)		
8.	SPREADER MANUFACTURER AND MODEL NUMBER Com	120 PS60	
9.	WIDTH PAVED IN ONE PASS (Feet)		[<u>38.0]</u>
.0.	DOWEL PLACEMENT METHOD Dowel Bar Inserter (DBI) 1 Dowel Bask	ket 2	[<u>Z</u>]
1.	NUMBER OF VIBRATORS		[<u>Z le]</u>
2.	VIBRATOR SPACING (Inches)		[18]
.3.	DEPTH OF VIBRATORS BELOW SURFACE (Inches)		[<u> 4.0</u>]
4.	ADDITIONAL VIBRATION APPLIED		· · · · · · · · · · · · · · · · · · ·

SPS-2 CONSTRUCTION DATA

SPS-2 CONSTRUCTION DATA SHEET 21 PORTLAND CEMENT CONCRETE LAYERS PLACEMENT DATA (CONTINUED)	* STATE CODE $[0.8]$ * SPS PROJECT CODE $[0.8]$ * TEST SECTION NO. $[59]$
1. CONSOLIDATION OF MATERIALS Internal Vibrators 1 Vibrating Scr Rolling 4 Tamping 5 Other (Specify) 6	/
2. FINISHING Screeding 1 Hand-Troweling 2 Other (Specify) 4 1, 2, 3	Machine-Troweling 3
Membrane Curing Compound 1 Burlap Curing Blankets 2 Waterproof Paper Blankets 3 White Polyethylene Sheeting 4 Other (Specify)	Burlap-Polyethylene Blanket 5 Cotton Mat Curing 6 Hay 7
4. TEXTURING Tine	(上) Grooved Float

SHEET 22 * STATE CODE PORTLAND CEMENT CONCRETE SURFACE LAYER * SPS PROJECT CODE * TEST SECTION NO. PROFILE DATA 102-22-931 1. DATE PROFILE MEASURED (Month-Day-Year) 2. PROFILOGRAPH TYPE California... 1 Rainhart... 2 [3,7] PROFILE INDEX (Inches/Mile). 4. INTERPRETATION METHOD Manual.. 1 Mechanical.. 2 Computer.. 3 $[\bot]$ 10.201 5. HEIGHT OF BLANKING BAND (Inches) 6. CUTOFF HEIGHT (Inches) [Y]7. SURFACE PROFILE USED AS BASIS OF INCENTIVE PAYMENT? (YES, NO) 8. WAS SURFACE PROFILE CORRECTED BY DIAMOND GRINDING? (YES, NO) [N]IF YES COMPLETE THE FOLLOWING: 9. DATE DIAMOND GRINDING OPERATIONS BEGAN (Month-Day-Year) 10. DATE DIAMOND GRINDING OPERATIONS COMPLETED (Month-Day-Year)[______] *11. REASON FOR GRINDING [_]. Elimination of Faulting... 1 Elimination of Slab Warping... 2 Improve Skid Resistance... 3 Restoration of Transverse Drainage Slope... 4 Correction of Construction Deficiencies...5 Other (Specify)... 6 __ 12. AVERAGE DEPTH OF CUT (Inches) 13. CUTTING HEAD WIDTH (Inches) 14. AVERAGE GROOVE WIDTH (Inches) 15. AVERAGE SPACING BETWEEN BLADES (Inches)

SPS-2 CONSTRUCTION DATA

PREPARER Mithel Bre

EMPLOYER LOOT

DATE <u>5/25/94</u>

rrovide any miscellaneous comment may have an influence on the ul cause undesired performance diff any quality control measurement	timate perf erences to	ormance of occur between	the test seen test sec	ections or tions, Als	which may o include
forms. Provide an indication of AASHTO, or Agency standard test	of the basis	s for such n	neasurement	s, such as	an ASTM,
			······································	····	
			•		·
					
			······································		
					
			 		
					· · · · · · · · · · · · · · · · · · ·
					· · · · · · · · · · · · · · · · · · ·
	···				
				· · · · · · · · · · · · · · · · · · ·	
				·	
PREPARER N. Llenderson	EMPLOYER .	NCE	I	DATE <u>7-21</u>	0-93

APPENDIX A

SAMPLING DATA SHEETS, FIELD OPERATIONS INFORMATION FORMS
AND SPS-2 CONSTRUCTION DATA SHEETS

(Exclusively for SPS Experiments)

080216

	SPS-2 CONSTRUCTION DATA SHEET 1 PROJECT IDENTIFICATION	* STATE CODE [OB] * SPS PROJECT CODE [OB] * TEST SECTION NO. [L]
*1.	DATE OF DATA COLLECTION OR UPDATE (Month/Year	11.01931
*2.	STATE HIGHWAY AGENCY (SHA) DISTRICT NUMBER	[<u>D 6</u> .]
*3.	COUNTY OR PARISH	[]
4.	FUNCTIONAL CLASS (SEE TABLE A.2, APPENDIX B)	[
*5.	ROUTE SIGNING (NUMERIC CODE) Interstate 1 U.S 2 State 3 Other 4	[1
* 6.	ROUTE NUMBER	<u> 7 (4.1</u>
7.	TYPE OF PAVEMENT (See Codes Below)	[1] [1]
8.	NUMBER OF THROUGH LANES (ONE DIRECTION)	[<u>2</u> .]
* 9.	DATE OF CONSTRUCTION COMPLETION (Month/Year)	[LO193]
*10.	DATE OPENED TO TRAFFIC (Month/Year)	[/ <u>93</u> 1
11.	CONSTRUCTION COSTS PER LANE MILE (In \$1000)	[1
12.	DIRECTION OF TRAVEL East Bound 1 West Bound 2 North Bound 4	Sound 3 [<u>1</u> .]
	PROJECT STARTING POINT LOCATION	
*13.	MILEPOINT	[_ <u>1 8.4 6</u> 1
*14.	ELEVATION	<u> </u>
*15.	LATITUDE	[,,,,
*16.	LONGITUDE	INALº 25, 25.3 E-1
17.	ADDITIONAL LOCATION INFORMATION (SIGNIFICANT OVER POSS 10 COTO APPROXIMATION)	LANDMARKS): Buckley Rd 500 feet last of sertion.
18.	HPMS SAMPLE NUMBER (HPMS ITEM 28) . [
19.	HPMS SECTION SUBDIVISION (HPMS ITEM 29)	⁷ []
	VALID PAVEMENT TYPE CODES FOR SPS-2, SPS-2A,	and SPS-2B
	JPCP on unbound base JRCP on unbound base	17 18
	JPCP on Bituminous base JRCP on Bituminous base	20 21
	JPCP on Lean Concrete Base JRCP on Lean Concrete Base	23 24

PREPARER N. Henderson EMPLOYER NCE DATE 10-12-93

G	SPS-2 CONSTRUCTION DATA SHEET 2 EOMETRIC, SHOULDER AND DRAINAGE INFORMATION	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	10 8 10 8 10 8
* 1.	LANE WIDTH (Feet)		[<u>4</u> .]
2.	MONITORING SITE LANE NUMBER (LANE 1 IS OUTSIDE LANE, NEXT TO SHOULD LANE 2 IS NEXT TO LANE 1, ETC.)	ER	[]
	SHOULDER DATA	INSIDE SHOULDER	OUTSIDE SHOULDER
* 3.	SHOULDER SURFACE TYPE Turf 1 Granular 2 Asphalt Concre Concrete 4 Surface Treatment 5 Other (Specify) 6	te 3 [<u>4</u> .]	[生.]
* 4.	TOTAL SHOULDER WIDTH (Feet)	<u>[_4.]</u>	(<u>8</u> .1
* 5.	PAVED SHOULDER WIDTH (Feet)	[_4]	[_8.1
6.	SHOULDER BASE TYPE (CODES-TABLE A.6)	[26.]	12 6.1
7.	SHOULDER SURFACE THICKNESS (Inches)	[] 1.0]	[] J. DI
8.	SHOULDER BASE THICKNESS (Inches)	<u>[_ le. 0]</u>	[<u>6</u> .0]
* 9.	SUBSURFACE DRAINAGE TYPE No Subsurface Drainage 1 Longitudinal Drainage Blanket Drainage Blanket with Longitudinal Drains	4 well bystem	[<u></u>]
*10.	Other (Specify) 7		, N 1
*1U.	SUBSURFACE DRAINAGE LOCATION Continuous Along Test Section l Intermi	ttent 2	(<u>/ -</u> .]
11.	DIAMETER OF LONGITUDINAL DRAINPIPES (Inches)		[_ 4]
12.	SPACING OF LATERALS (Feet)		[_ [].]

SPS-2 CONSTRUCTION DATA SHEET 4 LAYER DESCRIPTIONS * STATE CODE

* SPS PROJECT CODE

* TEST SECTION NO.

*1 LAYER	*2 LAYER DESCRIPTION	*3 MATERIAL TYPE	*4]	AYER THICK	NESSES (Inc	ches)
NUMBER	DESCRIPTION	CLASS	AVERAGE	MINIMUM	MAXIMUM	STD. DEV.
1	SUBGRADE(7)	(<u>5</u> 8)				
2	[<u>D</u> <u>5</u>]	1261	[لي]			
3	1031	1241	[_ 1 L. Q]			
4	[]	[]	(1			
5	[]	[]	[1			
6	[]	[]	[]			
7	[]	[]	[· _]			
8	[]	[]	[1			
9	[]	[]	[]			
10	[]	[]	[]			
				ļ	!	ļ

* 5	DEPTH	BELOW	SURFACE	TO	"RIGID"	LAYER	(Feet)
	(Rock,	Stone	e, Dense	Sha	ale)		

[_ <u>V</u> . _]

NOTES:

- Layer 1 is the subgrade soil, the highest numbered layer is the pavement surface.
- 3. The material type classification codes are presented in Tables A.5, A.6, A.7 and A.8 of the Data Collection Guide for Long Term Pavement Performance Studies, dated January 17, 1990 (Appendix B of SPS-2 Data Collection Guide).
- 4. Enter the average thickness of each layer and the minimum, maximum and standard deviation of the thickness measurements, if known.

PREPARER N DENDELSON EMPLOYER NCE

DATE 10-12-93

SPS-2 CONSTRUCTION DATA SHEET 5 LAYER THICKNESS MEASUREMENTS

* STATE CODE

* SPS PROJECT CODE * TEST SECTION NO.

LAYER THICKNESS MEASUREMENTS (Inches)

SHEET

		SHEET				
			LAYER THIC	KNESS (INCHE	5)	
STATION NUMBER	OFFSET (Inches)	DENSE GRADED AGGREGATE BASE	PERMEABLE ASPHALT TREATED BASE	LEAN CONCRETE BASE	PCC SURFACE	
0+00	<u>_ 60</u>	- (g · Z · R	:_		++· 4	
101+70		- 4 · 2 · 2 · 2 · 1 · 1 · 1 · 1			 	
0+50	- 4	_ 돌 ·원			<u> </u>	
102740	- G G G G G G G G G G G G G G G G G G G					
L+00	- 700	<u> </u>			<u> </u>	
102+90					1 1 :± 9 1 -1 -1 -5 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	
1+50	<u> </u>	<u> </u>		·	11·4	
103+40	190m;9	이			T-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
2+00	2	<u> </u>		·_	<u> </u>	
103+90	- 5 0 - 7 0 - 1 3 0 - 1 0	다				
2+50	<u> </u>	<u> - 날 .</u>			11.2	
104+40	- 6 C - 7 C - 3 C - 1 S - 2 C				11.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	
<u>3+00</u>	<u></u> -	<u> 투·호</u>			11.5	
104+90		- 44 - 45 - 49 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10				
LAYER NUMBE	ER1				<u> 3</u> _	

¹ from Construction Data Sheet 4

SPS-2 CONSTRUCTION DATA SHEET 5 LAYER THICKNESS MEASUREMENTS

* STATE CODE

* SPS PROJECT CODE * TEST SECTION NO.

LAYER THICKNESS MEASUREMENTS (Inches)

SHEET

SALEI UF						. Or
		LAYER THICKNESS (INCHES)				
STATION NUMBER	OFFSET (Inches)	DENSE GRADED AGGREGATE BASE	PERMEABLE ASPHALT TREATED BASE	LEAN CONCRETE BASE	PCC SURFACE	
3+50	- - 2	- 4 · <u>5</u>	:_	:_	11.5	
105+40	1493 1493 1493 1493 150 150 150 150 150 150 150 150 150 150	0)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		:_	十十:多	
4+00	0	3.5.소구 	:-	:-	1 - 8 1 - 1 - 1 1 - 2 - 1 1 - 2 - 1	
105+90	1998 1498 1498				1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
4+50	- 15	<u> </u>	·_	:-	11:7	
106440	- GOU - 93 U - 14 U	- 4599 - 1999 - 1999 - 1999				
 5+ <u>0</u> 0	- <u>- 0</u>		:_		<u>:</u>	
106+90 *		:_	<u>:</u>	==:=	:_	
 <u> </u>						لمسس
		:	:_			
		:_	:_	:_	:_	
_+						
		:_	:_	:_	:_	
		:_	:_	:_	:_	
_+		:-				
		:_ :	:_		:_	
				:_	:_	
LAYER NUMBI	ER1			. 	3	

¹ from Construction Data Sheet 4

PREPARER N. Henderson EMPLOYER NCE

DATE 06-30-94

	SPS-2 CONSTRUCTION DATA SHEET 6 SUBGRADE PREPARATION	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	[08] [02] [10]
l.	SUBGRADE PREPARATION BEGAN (Month-Day-Year)	1.09-	29.931
2.	SUBGRADE PREPARATION COMPLETED (Month-Day-Year	r) [<u>10</u> -	06-931
	PRIMARY COMPACTION EQUIPMENT		/
3.	CODE TYPE		(4)
	COMPACTION EQUIPMENT TYPE CODES Sheepsfoot 1 Pneumatic Tired 2 Storingle Drum Vibr 4 Double Drum Vibr Other (Specify) 6	. 5	
4.	GROSS WEIGHT (Tons)		(<u>4.0</u>)
		TYPE	PERCENT
5.	STABILIZING AGENT 1	(<u>5</u>)	[]
6.	STABILIZING AGENT 2	[]	[]
	STABILIZING AGENT TYPE CODES Portland Cement 1 Lime 2 Fly Ash, Fly Ash, Class N 4 Other (Specify) 5	Class C 3	
7.	TYPICAL LIFT THICKNESS (Inches) (For Fill Sections Only)		(4L.01
	NOTE: Density Data is recorded on Sam	pling Data Sheet 8-1	
8.	SIGNIFICANT EVENTS DURING CONSTRUCTION (DISRUETC.)	• •	ENT PROBLEMS

SPS-2 CONSTRUCTION DATA SHEET 7 CUT-FILL SECTION LOCATIONS * STATE CODE

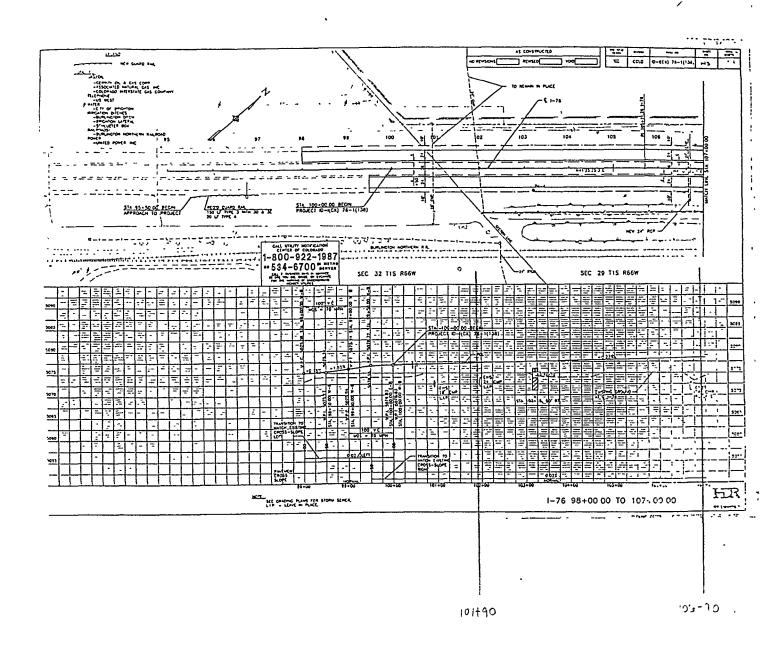
* SPS PROJECT CODE * TEST SECTION NO.

ORDER	*1 CUT-FILL¹	REFERENCE PROJ	*4 TEST SECTION	
ONDER	"I COLTILL"	*2 START *3 END		NUMBER 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25				090216

NOTES:

Indicate the type of subgrade section with one of the following: 1.

> Cut... 1 Fill... 2


2. A given Test Section No. will be repeated if both cut and fill sections exist within the test section.

PREPARER N. Hendelson EMPLOYER NCE DATE 10-17-94

SPS-2 CONSTRUCTION DATA
SHEET 8
SUBGRADE EXCAVATION AND BACKFILLING SKETCH

- * STATE CODE
- * SPS PROJECT CODE
- * TEST SECTION NO.

PREPARER N. C. P. C. EMPLOYER N.C.E.

DATE

UNBO	SPS-2 CONSTRUCTION DATA SHEET 9 OUND AGGREGATE BASE MATERIAL PLACEMENT	* STATE CODE $[0.8]$ * SPS PROJECT CODE $[0.2]$ * TEST SECTION NO. $[1/a]$
·1.	UNBOUND BASE MATERIAL PLACEMENT BEGAN (Month-	Day-Year) [[0.010.93]
÷2.	UNBOUND BASE MATERIAL PLACEMENT COMPLETED (Mon	<u> </u>
÷3.	LAYER NUMBER (From Sheet 4)	[2]
	PRIMARY COMPACTION EQUIPMENT	
r4.	CODE TYPE	(<u>3</u>)
	COMPACTION TYPE CODES Pneumatic - Tired 1 Steel Wheel Tandem. Double Drum Vibr 4 Other (Specify) 5	2 Single Drum Vibr 3
r5.	GROSS WEIGHT (Tons)	[_4.0]
6.	LIFT THICKNESSES	
	Nominal First Lift Placement Thickness (Inche	[<u>lo.D</u>]
	Nominal Second Lift Placement Thickness (Inch	es) []
	Nominal Third Lift Placement Thickness (Inche	s) []
	Nominal Fourth Lift Placement Thickness (Inch	es) []
	NOTE: Density Data is recorded on Sam	pling Data Sheet 8-1
7.	significant events during construction (disruetc.) Rain (0.2 in) on 10-7-93	

POI	SPS-2 CONSTRUCTION DATA SHEET 15 RTLAND CEMENT CONCRETE LAYERS-JOINT DATA	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	[<u>0</u> 8]
1.	LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)		<u>(3</u> 1
2.	AVERAGE CONTRACTION JOINT SPACING (Feet)		[_ <u>L5.0</u>]
3.	(RANDOM JOINT SPACING, IF ANY:	`	,
+ 4.	SKEWNESS OF JOINTS (ft/lane)		(<u>0</u> . <u>0</u>)
÷ 5.	TRANSVERSE CONTRACTION JOINT LOAD TRANSFER SY Round Dowels	. 1 . 2	[_]
* 6.	ROUND DOWEL DIAMETER (Inches)		11.501
* 7.	DOWEL SPACING (Inches)		1121
8.	DISTANCE OF NEAREST DOWEL FROM OUTSIDE LANE-SHOULDER EDGE (Inches)		[<u>4.0]</u>
9.	DOWEL LENGTH (Inches)		[18.1
10.	DOWEL COATING Paint and/or Grease Plastic Monel Stainless Steel Epoxy Other (Specify)	. 2 . 3 . 4 . 5	<u>(</u> 11
11.	METHOD USED TO INSTALL MECHANICAL LOAD TRANSPORT Preplaced on Baskets	1	<u>[_1</u>
12.	DOWEL ALIGNMENT CHECKED BEFORE PLACEMENT (Y/	4)	$(\overline{\lambda})$
13.	DOWEL ALIGNMENT CHECKED AFTER PLACEMENT (Y/N))	[<u>\</u>]
	If Yes, describe method used	·····	

SPS-2 CONSTRUCTION DATA SHEET 16 PORTLAND CEMENT CONCRETE LAYERS-JOINT DATA CONT'D * STATE CODE * SPS PROJECT O * TEST SECTION	CODE 10 Zi
* 1. LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)	<u>[3</u>]
* 2. METHOD USED TO FORM TRANSVERSE JOINTS Sawed	(
* 3. TYPE OF LONGITUDINAL JOINT (BETWEEN LANES) Butt	
* 4. TYPE OF SHOULDER-TRAFFIC LANE JOINT Butt	
*5. AVERAGE DEPTH OF SAWCUT, FROM MEASUREMENTS (Inches)	[2.75]
*6. TIME INTERVAL BETWEEN CONCRETE PLACEMENT AND SAWCUT (HOURS)	[<u>b</u> .]
7. TRANSVERSE JOINT SEALANT TYPE (AS BUILT) Preformed (Open Web) 1 Rubberized Asphalt Asphalt 2 Low-Modulus Silicone Other (Specify)	4
TRANSVERSE JOINT SEALANT RESERVOIR (AS BUILT)	
8. WIDTH, (Inches)	[39]
9. DEPTH, (Inches)	[2.70]
LONGITUDINAL JOINT SEALANT RESERVOIR (AS BUILT)	
10. WIDTH, (Inches)	ල.381
11. DEPTH, (Inches)	12.701
12. BETWEEN LANE TIE BAR DIAMETER (Inches)	[<u>625</u>]
13. BETWEEN LANE TIE BAR LENGTH (Inches)	[<u>3</u> 9.1
14. BETWEEN LANE TIE BAR SPACING (Inches)	[<u>30.0]</u>
SHOULDER-TRAFFIC LANE JOINT SEALANT RESERVOIR (AS BUILT)	
15. WIDTH, (Inches)	10.391
16. DEPTH, (Inches)	12.101
PREPARER N. SUNDENS OF EMPLOYER NCE DAT	E 10-12-93

POF	SPS-2 CONSTRUCTION E SHEET 18 RTLAND CEMENT CONCRETE LA		* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	[] [0] [0] [0]
*1.	LAYER NUMBER (FROM CONST			[3]
	MIX DESIGN (OVEN DRIED V			
*2.	Coarse Aggregate (Pounds			
*3.	Fine Aggregate (Pounds).		[_	935.1
*4.	Cement (Pounds)	• • • • • • • • • • • • • • • • • • • •	[_	749.I
* 5.	Water (Pounds)	• • • • • • • • • • • • • • • • • • • •		257.1
*6.	TYPE CEMENT USED (See Co	ement Type Codes, Table y Southwestern Type I		(<u>55)</u>
* 7.	ALKALI CONTENT OF CEMEN	r, (PERCENT BY WEIGHT	OF CEMENT)	[<u>5</u>]]
ADMIX	TURES (PERCENT BY WEIGHT	OF CEMENT)		
		TYPE CODE		AMOUNT
*8.	ADMIXTURE #1	[<u>/D</u> . <u>O</u>]	(__	<u> 20.01</u>
* 9.	ADMIXTURE #2	[<u>8.0</u>]	[_	025
*10.	ADMIXTURE #3	[]? WRA	[.	<u></u>
	(See Cement Admix (If Other, Specif	ture Codes, Table A.12))	
AGGRE	GATE DURABILITY TEST RES			
	TYPE OF AGGREGATE	TYPE OF TEST	RESULTS	
11.	Coarse	[<u>0</u> T]	[_32.0]	
12.	Coarse	[]	[1	
13.	Coarse	[]	[]	
14.	Coarse and Fine	[]	· []	

PREPARER N. Dendemon EMPLOYER NEE DATE 10-12-93

	SPS-2 CONSTRUCTION DATA SHEET 19	* STATE * SPS PI	CODE ROJECT CODE	[<u>0</u> 8]
	PORTLAND CEMENT CONCRETE LAYERS MIXTURE DATA (CONTINUED)	* TEST	SECTION NO.	1161
* 1.	LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)	<u> </u>		[3]
	COMPOSITION OF COARSE AGGREGATE		TYPE	PERCENT
* 2.	•		<u>[</u>]	[10,0.1
* 3.			[_]	[1
* 4.			[_]	[1
	Crushed Stone 1 Manufactured gravel Crushed Slag 4 Lightweight Other (Specify)		Crushed Grav Recycled Com	
* 5.	GEOLOGIC CLASSIFICATION OF COARSE AGGREGATE (SEE GEOLOGIC CLASSIFICATION CODES, TAR	BLE A.9)		[\[\sum_{\cdot}.]
COMPO	SITION OF FINE AGGREGATE		TYPE	PERCENT
* 6.			[_1	<u>[] 00.1</u>
* 7.			[_]	[]
* 8.			[_]	[]
	Natural Sand 1 Crushed, Manufactured Sand (From Crushed Grav Recycled Concrete 3 Other (Specify)		one)2	4
9.	Crushed, Manufactured Sand (From Crushed Grav		one)2	4 [<u>N</u> .]
9. 10.	Crushed, Manufactured Sand (From Crushed Graveled Concrete 3 Other (Specify)		one)2	
	Crushed, Manufactured Sand (From Crushed Grave Recycled Concrete 3 Other (Specify) INSOLUBLE RESIDUE, PERCENT (ASTM D3042) GRADATION OF COARSE AGGREGATE 11. GRAVE Sieve Size & Passing Sieve Size & Passing No. 1 1/2" 1 0 0 No. 1 1/2" No. 3/4" 9 9 No. 7/8" No. 3/4" No. 5/8"	ADATION O eve Size . 8 10 16 30 40		EGATE
10.	Crushed, Manufactured Sand (From Crushed Grave Recycled Concrete 3 Other (Specify) INSOLUBLE RESIDUE, PERCENT (ASTM D3042) GRADATION OF COARSE AGGREGATE 11. GRAVE Sieve Size & Passing Sieve Size & Passing No. 1 1/2" 1 0 0 No. 1 1/2" No. 3/4" 9 9 No. 7/8" No. 3/4" No. 5/8"	ADATION O eve Size . 8 10 16 30 40	F FINE AGGR * Passing - 2 7 - 7 - 4 4 - 7 - 7	EGATE
10.	Crushed, Manufactured Sand (From Crushed Grave Recycled Concrete 3 Other (Specify) INSOLUBLE RESIDUE, PERCENT (ASTM D3042) GRADATION OF COARSE AGGREGATE 11. GRAVE Size ** Passing No 2"	ADATION O eve Size . 8 10 16 30 40	F FINE AGGR * Passing - 2 7 - 7 - 4 4 - 7 - 7	EGATE
BULK	Crushed, Manufactured Sand (From Crushed Graveled Concrete 3 Other (Specify) INSOLUBLE RESIDUE, PERCENT (ASTM D3042) GRADATION OF COARSE AGGREGATE 11. GRADATION OF COARSE AGGREGATE Sieve Size \$ Passing 2"	ADATION O eve Size . 8 10 16 30 40	F FINE AGGR * Passing - 2 7 - 7 - 4 4 - 7 - 7	EGATE

	SHEET 20 PORTLAND CEMENT CONCRETE LAYERS PLACEMENT DATA	* STATE CODE [08] * SPS PROJECT CODE [02] * TEST SECTION NO [10]
1.	DATE PAVING OPERATIONS BEGAN (Month-Day-Year)	110-11-931
÷2.	DATE PAVING OPERATIONS COMPLETED (Month-Day-	
* 3.	LAYER NUMBER (FROM CONSTRUCTION DATA SHEET 4)) \(\lambda_{\bar{3}}\)
*4.	CONCRETE MIX PLANT AND HAUL	
	Plant 1 Castle Rock [tance (Mi) Time (Min)
*5.	PAVER TYPE Slip Form Paver 1 Side Form 2 Other (Specify)	3
6.	PAVER MANUFACTURER AND MODEL NUMBER <u>CAT</u>	SF -550
7.	SPREADER TYPE (if applicable)	
8.	spreader manufacturer and model number <u>God</u>	MACO PS-100
9.	WIDTH PAVED IN ONE PASS (Feet)	<u>(3 හ. ()</u>
10.	DOWEL PLACEMENT METHOD Dowel Bar Inserter (DBI) 1 Dowel Ba	sket 2
11.	NUMBER OF VIBRATORS	(<u>28</u>)
12.	VIBRATOR SPACING (Inches)	· (T 8)
13.	DEPTH OF VIBRATORS BELOW SURFACE (Inches)	[_ <u>6.0]</u>
14.	ADDITIONAL VIBRATION APPLIED	

SPS-2 CONSTRUCTION DATA

	SPS-2 CONSTRUCTION DATA SHEET 21 PORTLAND CEMENT CONCRETE LAYERS PLACEMENT DATA (CONTINUED)	* STATE CODE]
1.	CONSOLIDATION OF MATERIALS Internal Vibrators 1 Vibrating Screeds Rolling 4 Tamping 5 Other (Specify) 6	s 2 Troweling 3	<u> </u>
2.		chine-Troweling 3	<u>[4]</u>
3.	Membrane Curing Compound 1 Bourlap Curing Blankets 2 C	urlap-Polyethylene Blanket 5 otton Mat Curing 5 ay	5
4.	Broom 2 A	rooved Float	5

POI	SHEET 22 RTLAND CEMENT CONCRETE SURFACE LAYER PROFILE DATA	* STATE CODE * SPS PROJECT CODE * TEST SECTION NO.	[08] [08] [18]
1.	DATE PROFILE MEASURED (Month-Day-Year)	[]0-1	2-731
2.	PROFILOGRAPH TYPE California 1 Rainh	art 2	[_]
3.	PROFILE INDEX (Inches/Mile).		[]
4.	INTERPRETATION METHOD Manual 1 Mechanical	2 Computer 3	[]
5.	HEIGHT OF BLANKING BAND (Inches)	1	10. <u>20</u> 1
6.	CUTOFF HEIGHT (Inches)	!	[]
7.	SURFACE PROFILE USED AS BASIS OF INCENTIVE PA	YMENT? (YES, NO)	[1
8.	WAS SURFACE PROFILE CORRECTED BY DIAMOND GRIN	DING? (YES, NO)	[<u>N</u>]
	IF YES COMPLETE THE FOLLOWING:		
9.	DATE DIAMOND GRINDING OPERATIONS BEGAN (Month	n-Day-Year) []
10.	DATE DIAMOND GRINDING OPERATIONS COMPLETED (N	fonth-Day-Year)[1
*11.	REASON FOR GRINDING Elimination of Faulting 1 Elimination of Improve Skid Resistance 3 Restoration of Transverse Drainage Slope 4 Correction of Construction Deficiencies 5 Other (Specify) 6	_	[1,
12.	AVERAGE DEPTH OF CUT (Inches)		[]
13.	CUTTING HEAD WIDTH (Inches)	[]
14.	AVERAGE GROOVE WIDTH (Inches)		[·]
15.	AVERAGE SPACING BETWEEN BLADES (Inches)		[]

PREPARER Mike Show EMPLOYER COOT DATE 5/23/94

SPS-2 CONSTRUCTION DATA SHEET 27 MISCELLANEOUS CONSTRUCTION NOTES AND COMMENTS

- * STATE CODE
- * SPS PROJECT CODE
- * TEST SECTION NO.

Provide any miscellaneous comments and notes concerning construction operations which may have an influence on the ultimate performance of the test sections or which may cause undesired performance differences to occur between test sections. Also include any quality control measurements or data for which space is not provided on other forms. Provide an indication of the basis for such measurements, such as an ASTM, AASHTO, or Agency standard test designation.

PREPARER N. DINGUNDON EMPLOYER NCE DATE 16-11-93